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 PERSPECTIVES

 Rational Expectations and Ambiguity
 Thomas J. Sargent

 On 20 May 2013 at the 66th CFA Institute Annual Conference in Singapore, Thomas J. Sargent discussed his
 research on rational expectations and macroeconomics. He examined the probability distribution function of
 potential future outcomes in terms of ambiguity aversion and discussed market equilibrium under ambiguity
 aversion. He also considered whether swings in the market represent changes in the degree of ambiguity and, if
 so, whether those states can be predicted.

 The concept of rational expectations is widely
 used in academic finance and macroeconom

 ics. For better or worse, in model shops at
 central banks, it is used almost exclusively.

 Widely used in economics, finance, and port
 folio management, expected utility models com
 prise two elements: a probability distribution of
 potential outcomes and a utility function that
 indicates what we think about a particular out
 come. The utility function expresses preferences
 about risk—whether we are risk averse (and so
 require compensation for accepting additional
 risk), risk neutral (do not require compensation
 for additional risk, making the risk-free rate uni
 versally appropriate for discounting), or risk lov
 ing (require something less than the risk-free rate
 to take on additional risk).

 When contemplating or constructing the prob
 ability distribution function describing potential
 future outcomes, we try to model our "ignorance"
 about the future completely. We are uncertain
 about what the future will be but pretend to be
 certain about the possible future outcomes and the
 relative frequency or probability of those possible
 future outcomes. Again, we do not know what
 the future holds, but we do know the probabil
 ity distribution function of what can happen in
 the future. So, we do know something about the
 future and can make decisions about the "uncer
 tain" future.

 A natural question arises: Where does this
 probability distribution over future events come
 from? And if the answer is, "From the participants
 in the market," where did they find it?

 Thomas }. Sargent is professor of economics at New York
 University.

 Rational Expectations
 The concept of rational expectations is a widely
 used assumption in game theory, macroeco
 nomics, and finance. It is almost automatically
 used by people who build models of financial
 crises and who build models for central banks.

 It assumes that a single probability distribution
 is agreed upon by all the participants within a
 given model. It is accurate only in the sense that
 it is shared by the reality that the analyst is trying
 to model.

 Because everyone is assumed to think about
 the future probability distribution in the same way,
 I like to call this model a form of "assumed commu

 nism." The rational expectations assumption of a
 commonly shared probability distribution function
 makes us all communists, in one sense.

 The assumed single probability distribution
 function over future outcomes is a very powerful
 tool. It is exploited cleverly in Lars Peter Hansen's
 innovative applications of generalized method of
 moments estimation to asset-pricing and other
 macroeconomic models. It is used to formulate

 the so-called dynamic general equilibrium mod
 els used by central banks. Ben Bernanke, the for
 mer US Federal Reserve chairman, relied on it
 when he cited the Diamond-Dybvig model (1983)
 of bank runs to justify many of his actions dur
 ing the financial crisis.1 I myself have been using
 the rational expectations assumption most of my
 adult life.

 What is the justification for this assumption,
 beyond the defense that a lot of smart people use it?
 One justification is simplicity. It is dauntingly dif
 ficult to describe or model one person's probability
 distribution function, and it would be dreadfully
 more difficult to figure out a different probability
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 distribution possessed by a collection of people
 living in a model. So, for the sake of simplicity,
 the concept of rational expectations assumes that
 everyone thinks about the future probability distri
 bution in the same way.

 Another justification comes from assuming
 that everybody living in a model is very experi
 enced and that there are enough observations to
 apply the law of large numbers. If we have enough
 observations, there are results that show we will all

 eventually agree about what we know. In a sense,
 the law of large numbers means that we all end up
 learning the same thing. Many people, including
 me, have used this argument.

 The late Milton Friedman (1953) justified a
 rational expectations assumption on the basis
 of survival in a competitive process that yields
 survival of the fittest. Those who have realistic

 beliefs about the future eventually extract all
 the wealth from those who do not have realistic

 beliefs and consequently dominate the market.
 This evolutionary argument explains how the
 market finally settles on a particular future prob
 ability distribution.

 These justifications call for some caveats.
 Simplicity is a double-edged sword. Making a
 model tractable and "simple" automatically means
 ignoring some possibilities that can emerge when
 people have diverse beliefs. Sometimes we over
 simplify, to our detriment.

 The law of large numbers does not tell us how
 many observations we need in order to "learn"
 or to agree about what we have "learned." And
 learning can take a very long time. I view appeal
 ing to the law of large numbers as a convenient
 "bluff" in that we are essentially saying that
 eventually we will learn but do not know when we
 will learn. Further, some infrequent events that
 may matter a great deal are ignored by the law of
 large numbers.

 In considering Friedman's evolutionary argu
 ment, we must assume that markets are complete
 and that they allow participants to bet on the dis
 crepancies between their beliefs. Friedman's evo
 lutionary process toward a situation in which the
 most accurate beliefs about the future dominate the

 market is attenuated if there are too few markets

 or overregulated markets. Such circumstances may
 reverse the process by allowing unrealistic expecta
 tions of the future to prosper and not be competed
 away. Recently, some university professors have
 used this insight to argue for more regulation of the
 markets because they think it unfair that markets
 transfer resources from people with stupid beliefs
 to people with smarter beliefs about outcomes. This

 argument is not one I would make, but it is alive
 and maybe even influential.

 Bayesians and Waiting on the Law
 of Large Numbers
 When I talk about rational expectations in the
 sense that all of us have the same beliefs about

 the future, I am talking as an academic or as
 someone building a model for a central bank. But
 if we are decision makers and know that we will

 have to wait awhile for the law of large numbers
 to become informative, we will want to think
 differently about the source of our probability
 distribution over the future outcomes—that is,
 think outside the box provided by the law of
 large numbers.

 One approach—the use of Bayesian statistics—
 is considered by some to be the most brilliant of
 all solutions and by others a refuge for scoundrels.
 Bayesians completely summarize what they do not
 know in terms of a subjective probability distribu
 tion function over outcomes. They create this distri
 bution through introspection and head scratching
 (and maybe some beer). The subjective probability
 distribution function is considered just as valid as
 an objective probability distribution function based
 on the law of large numbers.

 What is the source of that subjective probability
 distribution? The famous University of Minnesota
 economist and Nobel laureate Leo Hurwicz used

 to say that it is rude to ask a Bayesian where this
 distribution comes from; it is a personal matter, and
 from the point of view of Bayesian theory, one dis
 tribution is as good as another.

 The upshot is that a Bayesian statistician has
 a unique joint probability distribution over all
 possible outcomes. For a Bayesian, the statistical
 theory of learning is trivial: Hand your initial sub
 jective joint probability distribution to your staff
 and tell them to update conditional distributions
 as data flow in. Bayesians call this process apply
 ing the Bayes rule to generate conditional prob
 abilities. During the learning process, the under
 lying unique initial subjective joint distribution
 does not change, but the conditional probability
 distributions change as they are updated with
 data over time.

 The Bayesian approach is an essential part of
 expected utility theory. The process can be thought
 of as describing what one does while waiting for
 the law of large numbers to become applicable.
 Eventually, the data will update the conditional
 probability to make beliefs converge to something
 unique. Unfortunately, the data may be unable to
 tell us everything about the future—say, will the
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 euro survive? If the euro does not survive, what
 will replace it? The future is so complicated and his
 tory dependent that it seems unrealistic to expect
 data to reveal everything we would like to know in
 order to make good decisions.

 We could use an imaginative approach initi
 ated by Fischer Black and Bob Litterman (1992),
 who asked, Given our utility function, does our
 subjective probability distribution of the future
 (also called our "prior") imply decisions that
 seem sensible?

 To understand what Black and Litterman

 did, let us assume that portfolios are based on
 mean-variance analysis. Thus, we assume that our
 utility function is quadratic such that a security's
 mean return and return variance are the only
 statistical attributes that matter to the investor.

 Put differently, the investor is concerned with only
 risk and return (sound familiar?). When Black
 and Litterman (1992) performed their risk-return
 optimization for portfolio weights based on good
 least-squares estimates of means and variances of
 returns, what emerged were portfolio weights that
 were completely wacky, with extreme values for
 short and long positions in various securities.

 The Black-Litterman response was to act as
 if they believed that the estimated covariances
 between security returns were correct but that the
 estimated mean returns of each security were not to
 be trusted. (There are deep statistical reasons that
 recommend those assumptions.) Then, Black and
 Litterman did some very clever things. Looking
 at the market portfolio, they backed out what a
 representative investor's subjective mean returns
 would have to be to rationalize that investor's

 being content to hold the market portfolio. They
 then computed the discrepancy between those
 market-implied subjective mean returns and the
 sample mean return. That discrepancy is the core
 of the Black-Litterman model. The reason I praise
 Black and Litterman's approach in this piece is that
 it is one of the first and most serious attempts to
 address the possibility of an important discrep
 ancy between what investors believe and act on
 and what is actually out there in the real world.
 Their work naturally makes you think about mul
 tiple probability distributions and the differences
 between them.

 Ambiguity
 To look at this matter another way, let us consider
 something important called the Ellsberg Paradox
 (Ellsberg 1961). Richard Nixon hated Daniel
 Ellsberg because he released the Pentagon Papers.
 However, some Bayesian people hated him before
 Nixon did, and the following exercise will explain

 why. To examine the Ellsberg Paradox, we will
 imagine the following mental experiment, designed
 to distinguish "risk" from "uncertainty."

 In a room are two urns: Urn A and Urn B. In

 Urn A are 10 black balls and 10 white balls. If we

 choose Urn A, we choose a color. Then nature
 randomly draws a ball from the urn. If the color
 we chose matches the color of the drawn ball, we

 receive $10 million; otherwise, we receive nothing.
 The probability of winning by using Urn A is 50%
 because the number of black balls equals the num
 ber of white balls. So, the expected payoff associ
 ated with "playing" Urn A is $5 million.

 In Urn B are 20 balls that are black or white,
 but we do not know how many balls are black and
 how many are white. If we choose Urn B, the game
 is much the same as with Urn A. First, we choose a

 color, and then nature draws a ball. If the randomly
 drawn ball is the color we chose, we receive $10
 million; otherwise, we receive nothing. What is the
 expected payoff of choosing Urn B? We simply do
 not know, which was Ellsberg's way of expressing
 the idea that for Urn B there is uncertainty and for
 Urn A there is only risk.

 The question now is, Which urn should we
 choose, A or B? Bayesians should choose Urn B
 because from a utility perspective, any subjective
 distribution of the proportion of white balls to black
 balls is equivalent to (if we assume 10 black and 10
 white balls) or even better than (for any subjective
 distributions other than fifty-fifty) choosing Urn A.
 Think about it: Any prior that has a majority of balls
 of a particular color in Urn B favors choosing Urn
 B, then that color. For any subjective probability for
 the two colors, the expected payoff associated with
 choosing Urn B is at least $5 million. For example,
 if the prior is 12 black balls and 8 white balls, then
 the expected payoff for choosing black is $6 million
 (= 12/20 x $10 million + 8/20 x $0) and not $5 mil
 lion, the expected payoff for Urn A (= 10/20 x $10
 million + 10/20 x $0). Consequently, by choosing
 Urn B, a Bayesian has, at worst, the same odds of
 winning as with Urn A and potentially better odds
 of winning, depending on the Bayesian's subjective
 probability for the balls in Urn B.

 Ellsberg induced a group of famous econo
 mists and statisticians to participate in this experi
 ment. Surprisingly, at least from a Bayesian per
 spective, almost all of them chose Urn A. Ellsberg
 concluded that those people were not acting like
 Bayesians. And that is why Bayesians, such as my
 good friend Chris Sims, do not like Ellsberg—or at
 least his experiment.

 Why do people seem to prefer Urn A? Smart
 followers of Ellsberg hit upon an explanation that
 expresses people's aversion to "uncertainty" or
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 "statistical model ambiguity": When we do not
 know the distribution of future events and are

 unwilling to make up a subjective distribution of
 the future, there is ambiguity about the future and
 we cannot simply maximize an expected utility
 function to make a decision. What should we do?

 Some smart people, starting with Abraham Wald
 and Leo Hurwicz, said that we should embrace
 "min-max" behavior. At first, this approach may
 sound very paranoid when I explain it, but please
 wait before rejecting it too soon.

 The reasoning behind using a min-max deci
 sion rule in the urn example is that when we
 choose a color, nature will choose a distribution
 from which to draw a ball that minimizes our

 expected payoff. At least, we act as if nature will
 always work against our color selection to "mini
 mize" us. So, we seek to maximize our expected
 utility while assuming that nature will minimize
 our opportunity to win the game. Such min-max
 behavior induces us to choose Urn B. We do not

 behave like Bayesians.
 To me, min-max expected utility behavior is

 not about being paranoid. Rather, it is a device to
 bound expected utility with respect to a set of pos
 sible probability models.

 The preceding discussion of the Ellsberg
 Paradox sets the stage for the following brief dis
 cussion of a promising approach to coping with
 model uncertainty that comes from engineering
 and applied mathematics. It is called robust con
 trol theory.

 The End of Communism

 Now, let us not be communists in the limited

 sense of having only one probability distribu
 tion function over future events that everyone
 believes. Instead, we could perhaps agree that
 there is a set of potential models of the future
 (i.e., a set of different probability distribution
 functions over future outcomes). Because we
 have different interests (i.e., utility functions), we
 might make decisions on the basis of min-max
 decision theory; that is, the min part of our min
 max decision problems would tell us to "choose"
 different probability distribution functions from
 the agreed-upon set of models against which to
 maximize our different utility functions. Such
 behavior would generate what looks like, ex post,
 belief heterogeneity.

 How should we measure model ambiguity?
 Although we have a set of potential probability
 distribution functions of the future, we are unwill

 ing to combine these distributions into a single
 probability distribution, as a Bayesian would.
 Suppose that we perform some econometric or

 statistical analysis to develop a model of returns
 and risks. After taking our best cut, suppose that,
 like Black and Litterman (1992), we ask ourselves
 whether we completely trust and believe in our
 model. If someone should ask us why we do not,
 we would just say that we know there are other
 probability distributions that fit the data as well
 or almost as well but we do not have enough
 data to prove convincingly that one distribu
 tion is better than another. The way my friend
 Lars Hansen and I proceeded in this situation
 was to measure the statistical proximity of dif
 ferent distributions (Hansen and Sargent 2008).
 To measure statistical discrepancy between two
 distributions, we used the statisticians' measure
 called entropy.

 Given the probability distribution functions /
 and f, we can calculate the expected value of the
 log likelihood ratio under one of the distributions,
 which is called relative entropy:

 ent = Ê log ' £
 v/J

 ( fi\

 log
 V-7 J

 'r
 \f j

 Relative entropy (ent) is a measure of how close
 two models are statistically, and it governs the rate
 at which we can distinguish between the two distri
 butions as datasets grow.

 So, Lars and I surrounded the probability dis
 tribution function that we got from our economet
 ric work with an "entropy ball" containing other
 possible probability distributions that were very
 close in terms of fitting the data. There are deep
 reasons to think that Black and Litterman (1992)
 were using an entropy ball when they said that
 they trusted the covariances but not the means in
 creating their model.

 Now let us consider a simple investment deci
 sion for a risk-neutral investor. Two securities are

 available: a risk-free security with a return of rQ and
 a risky security with a mean return of p and an asso
 ciated variance of a2, both of which we know with
 certainty. We can borrow or save at the risk-free
 rate, and we can be short or long one share of the
 risky security. Under the Dodd-Frank Wall Street
 Reform and Consumer Protection Act, speculation
 is limited to one share.

 What should the investment decision be? If

 p > rQ, then we should borrow money to purchase
 one share of the risky security If p < r0, then we
 should short one share of the risky security and
 invest the proceeds at the risk-free rate. If p = rQ,
 then we are indifferent as to being long or short the
 risky security.

 Now let us change the scenario. Suppose that we
 do not trust the distribution of the risky return. To
 keep it simple, let us assume there is a set of possible
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 means or an interval in which the mean resides.

 Although there was no bid-ask spread before, there
 will be now because of min-max behavior. It works

 like this: If we go long, nature will work against
 us and generate the lowest possible mean. If we
 go short, nature will work against us and generate
 the highest possible mean. From the Dow-Werlang
 model (1992) with ambiguity, we obtain

 min max (n+°v-r0)<x
 : ae (-1,1)

 and

 1 if n - r0 > 0 and |a - r0 - a^/2^ > 0

 a = I — 1 if n — r0 < 0 and fi - r0 - o-Jlï] < 0

 0 otherwise
 J

 where r| measures entropy. There is a region of
 inactivity whose size depends on the number of
 other possible models that can exist around the
 approximating model as measured by entropy. This
 calculation demonstrates how ambiguity measured
 as entropy can freeze a market over a certain inter
 val or cause the bid-ask spread to grow.

 Asset Pricing and Model
 Uncertainty
 The key equation in asset pricing is

 Et(mn\Rj,t+\) = ^

 which has a stochastic discount factor, mf+1, and a risky
 return, R- f+1. The discount factor is a random variable
 that encodes the conditional covariance between the

 discount factor and the return that sets the expecta
 tion to 1 (see Cochrane 2005). All formulas about risk

 premiums come from this equation. Because the cova
 riance is so integral to the formula, a natural question
 is, On what probability distribution function is this
 covariance based? John Cochrane's book is based
 on one particular probability distribution function,
 which makes his book a communist book (my making
 that statement would really annoy John).

 Lars Hansen and I attacked the problem by
 manipulating the stochastic discount factor (Hansen
 and Sargent 2008). By staring at the stochastic discount

 factor, one can figure out how risks are priced. Under
 the standard communist interpretation (i.e., one
 probability distribution function exists for everyone),
 all risk premiums are generated by people's attitude
 toward risk. If we rework that theory with ambiguity
 present, we find that people may have been misin
 terpreting the prices of risk when using the commu
 nist interpretation. These "prices" are not about risk
 but, rather, reflect ambiguity or model uncertainty
 (uncertainty about the correct probability distribu
 tion function); people hate being confronted with a
 situation in which they do not know the probability
 distribution function of future events.

 Conclusion

 I credit Lars Hansen with this summing-up "punch
 line": A small amount of model uncertainty can
 substitute for a large amount of risk in terms of
 explaining return premiums.

 Lars and I wrote a paper on fragile beliefs
 that, in a sense, addresses "market stability" under
 model ambiguity. In our model, beliefs change
 rapidly when small amounts of additional data
 are introduced (Hansen and Sargent 2010). This
 dynamic might help explain volatility.

 Another important question is whether swings
 in the market represent changes in the degree of
 ambiguity and, if so, whether those states can be
 predicted. In our 2010 paper on fragility, Lars and I
 defined fragility in an environment where ambigu
 ity is ever present, which means that informational
 changes create large swings in market participants'
 beliefs. Let us imagine a pessimist who oper
 ates under the min-max premise and views good
 news as temporary and bad news as permanent.
 This logic, which is interior to the problem, causes
 these big swings in beliefs, particularly in how bad
 news is evaluated relative to good news. That is
 the "spirit" of our idea. I do not think our model
 is ready for us to use in trying to run a country
 because we still have to think through a number
 of issues.

 This article qualifies for 0.5 CE credit.

 Notes

 1. Recently succeeded by Janet Yellen as Fed chair, Bernanke
 has said that we live in a world of "unusual uncertainty."
 How has he adapted his models to account for that? When
 we consider what he did as Fed chair, Bernanke is a kind of
 empirical macroeconomist who studies how well rules work
 under normal circumstances. In other words, he studies mon

 etary policy rules that have been applied in the past to do
 certain things. What he did over the past four or five years
 is unprecedented. Because there are no past data concerning

 the effects of quantitative easing, Bernanke was like the per
 son in the Ellsberg Paradox who chooses Urn B (discussed
 later in the article). Although Bernanke is very smart and well
 versed in theory, he was in a situation in which the data did
 not reveal the probability distribution function of the future
 that he sought. So, he had to make it up or make an educated
 guess as to what the distribution was. Bernanke was dealing
 with a much more complicated version of my little model of
 ambiguity because his models had a lot more moving parts.
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 He was operating one of the biggest hedge funds—no disre
 spect intended—in the United States and possibly the world.

 He was like our Dow-Werlang (1992) person but with very
 large long and short positions in some securities.
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