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 A BEHAVIORAL MODEL OF RATIONAL CHOICE

 By HERBERT A. SIMON*

 Introduction, 99.- I. Some general features of rational choice, 100.
 II. The essential simplifications, 103. - III. Existence and uniqueness of solu-
 tions, 111. - IV. Further comments on dynamics, 113. - V. Conclusion, 114.
 Appendix, 115.

 Traditional economic theory postulates an "economic man,"
 who, in the course of being "economic" is also "rational." This man
 is assumed to have knowledge of the relevant aspects of his environ-
 ment which, if not absolutely complete, is at least impressively clear
 and voluminous. He is assumed also to have a well-organized and
 stable system of preferences, and a skill in computation that enables
 him to calculate, for the alternative courses of action that are avail-
 able to him, which of these will permit him to reach the highest
 attainable point on his preference scale.

 Recent developments in economics, and particularly in the theory
 of the business firm, have raised great doubts as to whether this
 schematized model of economic man provides a suitable foundation
 on which to erect a theory - whether it be a theory of how firms do
 behave, or of how they "should" rationally behave. It is not the
 purpose of this paper to discuss these doubts, or to determine whether
 they are justified. Rather, I shall assume that the concept of "eco-
 nomic man" (and, I might add, of his brother "administrative man")
 is in need of fairly drastic revision, and shall put forth some sugges-
 tions as to the direction the revision might take.

 Broadly stated, the task is to replace the global rationality of
 economic man with a kind of rational behavior that is compatible
 with the access to information and the computational capacitiesthat
 are actually possessed by organisms, including man, in the kinds of
 environments in which such organisms exist. One is tempted to turn

 * The ideas embodied in this paper were initially developed in a series of
 discussions with Herbert Bohnert, Norman Dalkey, Gerald Thompson, and
 Robert Wolfson during the summer of 1952. These collaborators deserve a large
 share of the credit for whatever merit this approach to rational choice may
 possess. A first draft of this paper was prepared in my capacity as a consultant
 to the RAND Corporation. It has been developed further (including the Appen-
 dix) in work with the Cowles Commission for Research in Economics on "Decision
 Making Under Uncertainty," under contract with the Office of Naval Research,
 and has been completed with the aid of a grant from the Ford Foundation.
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 QUARTERLY JOURNAL OF ECONOMICS

 to the literature of psychology for the answer. Psychologists have
 certainly been concerned with rational behavior, particularly in their
 interest in learning phenomena. But the distance is so great between
 our present psychological knowledge of the learning and choice
 processes and the kinds of knowledge needed for economic and
 administrative theory that a marking stone placed halfway between
 might help travellers from both directions to keep to their courses.

 Lacking the kinds of empirical knowledge of the decisional
 processes that will be required for a definitive theory, the hard facts
 of the actual world can, at the present stage, enter the theory only in
 a relatively unsystematic and unrigorous way. But none of us is
 completely innocent of acquaintance with the gross characteristics
 of human choice, or of the broad features of the environment in which
 this choice takes place. I shall feel free to call on this common
 experience as a source of the hypotheses needed for the theory about
 the nature of man and his world.

 The problem can be approached initially either by inquiring into
 the properties of the choosing organism, or by inquiring into the
 environment of choice. In this paper, I shall take the former approach.
 I propose, in a sequel, to deal with the characteristics of the environ-
 ment and the interrelations of environment and organism.

 The present paper, then, attempts to include explicitly some of
 the properties of the choosing organism as elements in defining what
 is meant by rational behavior in specific situations and in selecting a
 rational behavior ini terms of such a definition. In part, this involves
 making more explicit what is already implicit in some of the recent
 work on the problem - that the state of information may as well be
 regarded as a characteristic of the decision-maker as a characteristic
 of his environment. In part, it involves some new considerations -
 in particular taking into account the simplifications the choosing
 organism may deliberately introduce into its model of the situation
 in order to bring the model within the range of its computing capacity.

 I. SOME GENERAL FEATURES OF RATIONAL CHOICE

 The "flavor" of various models of rational choice stems primarily
 from the specific kinds of assumptions that are introduced as to the
 "givens" or constraints within which rational adaptation must take
 place. Among the common constraints - which are not themselves
 the objects of rational calculation - are (1) the set of alternatives
 open to choice, (2) the relationships that determine the pay-offs
 ("satisfactions," "goal attainment") as a function of the alternative
 that is chosen, and (3) the preference-orderings among pay-offs. The
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 A BEHAVIORAL MODEL OF RATIONAL CHOICE

 selection of particular constraints and the rejection of others for
 incorporation in the model of rational behavior involves implicit
 assumptions as to what variables the rational organism "controls" -
 and hence can "optimize" as a means to rational adaptation- and
 what variables it must take as fixed. It also involves assumptions as
 to the character of the variables that are fixed. For example, by
 making different assumptions about the amount of information the
 organism has with respect to the relations between alternatives and
 pay-offs, optimization might involve selection of a certain maximum,
 of an expected value, or a minimax.

 Another way of characterizing the givens and the behavior
 variables is to say that the latter refer to the organism itself, the
 former to its environment. But if we adopt this viewpoint, w-e must
 be prepared to accept the possibility that what we call "the environ-
 ment" may lie, in part, within the skin of the biological organism.
 That is, some of the constraints that must be taken as givens in an
 optimization problem may be physiological and psychological limita-
 tions of the organism (biologically defined) itself. For example, the
 maximum speed at which an organism can move establishes a bound-
 ary on the set of its available behavior alternatives. Similarly,
 limits on computational capacity may be important constraints enter-
 ing into the definition of rational choice under particular circum-
 stances. We shall explore possible ways of formulating the process of
 rational choice in situations where we wish to take explicit account of
 the "internal" as well as the "external" constraints that define the

 problem of rationality for the organism.
 Whether our interests lie in the normative or in the descriptive

 aspects of rational choice, the construction of models of this kind
 should prove instructive. Because of the psychological limits of the
 organism (particularly with respect to computational and predictive
 ability), actual human rationality-striving can at best be an extremely
 crude and simplified approximation to the kind of global rationality
 that is implied, for example, by game-theoretical models. While the
 approximations that organisms employ may not be the best- even
 at the levels of computational complexity they are able to handle-
 it is probable that a great deal can be learned about possible mecha-
 nisms from an examination of the schemes of approximation that are
 actually employed by human and other organisms.

 In describing the proposed model, we shall begin with elements
 it has in common with the more global models, and then proceed to
 introduce simplifying assumptions and (what is the same thing)
 approximating procedures.
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 1.1 Primitive Terms and Definitions

 Models of rational behavior - both the global kinds usually
 constructed, and the more limited kinds to be discussed here--
 generally require some or all of the following elements:

 1. A set of behavior alternatives (alternatives of choice or deci-
 sion). In a mathematical model, these can be represented by a point
 set, A.

 2. The subset of behavior alternatives that the organism "considers"
 or "perceives." That is, the organism may make its choice within a
 set of alternatives more limited than the whole range objectively
 available to it. The "considered" subset can be represented by a
 point set A, with AO included in A (ACA).

 3. The possible future states of affairs, or outcomes of choice,
 represented by a point set, S. (For the moment it is not necessary to
 distinguish between actual and perceived outcomes.)

 4. A "pay-off" function, representing the "value" or "utility"
 placed by the organism upon each of the possible outcomes of choice.
 The pay-off may be represented by a real function, V(s) defined for
 all elements, s, of S. For many purposes there is needed only an
 ordering relation on pairs of elements of S--i.e., a relation that
 states that si is preferred to s2 or vice versa - but to avoid unneces-
 sary complications in the present discussion, we will assume that a
 cardinal utility, V(s), has been defined.

 5. Information as to which outcomes in S will actually occur if a
 particular alternative, a, in A (or in A°) is chosen. This information
 may be incomplete - that is, there may be more than one possible
 outcome, s, for each behavior alternative, a. We represent the
 information, then, by a mapping of each element, a, in A upon a
 subset, S - the set of outcomes that may ensue if a is the chosen
 behavior alternative.

 6. Information as to the probability that a particular outcome will
 ensue if a particular behavior alternative is chosen. This is a more
 precise kind of information than that postulated in (5), for it asso-
 ciates with each element, s, in the set Sa, a probability, Pa(s) - the
 probability that s will occur if a is chosen. The probability Pa(s) is a
 real, non-negative function with I Pa(s) = 1.

 Sa

 Attention is directed to the threefold distinction drawn by the
 definitions among the set of behavior alternatives, A, the set of out-
 comes or future states of affairs, S, and the pay-off, V. In the ordi-
 nary representation of a game, in reduced form, by its pay-off matrix,
 the set S corresponds to the cells of the matrix, the set A to the
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 A BEHAVIORAL MODEL OF RATIONAL CHOICE

 strategies of the first player, and the function V to the values in the
 cells. The set Sa is then the set of cells in the ath row. By keeping in
 mind this interpretation, the reader may compare the present formu-
 lation with "classical" game theory.

 1.2 "Classical" Concepts of Rationality

 With these elements, we can define procedures of rational choice
 corresponding to the ordinary game-theoretical and probabilistic
 models.'

 A. Max-min Rule. Assume that whatever alternative is chosen,

 the worst possible outcome will ensue - the smallest V(s) for s in Sa
 will be realized. Then select that alternative, a, for which this worst
 pay-off is as large as possible.

 A

 V(d) = Min V(s) = Max Min V(s)
 seSd aeA seSa

 Instead of the maximum with respect to the set, A, of actual
 alternatives, we can substitute the maximum with respect to the set,
 A, of "considered" alternatives. The probability distribution of
 outcomes, (6) does not play any role in the max-min rule.

 B. Probabilistic Rule. Maximize the expected value of V(s) for
 the (assumed known) probability distribution, Pa(s).

 A

 V(a) = I V(s)Pa(s) = Max 2 V(s)Pa(s)
 seSa aeA seSa

 C. Certainty Rule. Given the information that each a in A (or
 in A) maps upon a specified Sa in S, select the behavior alternative
 whose outcome has the largest pay-off.

 A

 V(a) = V(Sa) = Max V(Sa)
 aeA

 II. THE ESSENTIAL SIMPLIFICATIONS

 If we examine closely the "classical" concepts of rationality out-
 lined above, we see immediately what severe demands they make upon
 the choosing organism. The organism must be able to attach definite
 pay-offs (or at least a definite range of pay-offs) to each possible out-
 come. This, of course, involves also the ability to specify the exact
 nature of the outcomes - there is no room in the scheme for "unan-

 ticipated consequences." The pay-offs must be completely ordered -

 1. See Kenneth J. Arrow, "Alternative Approaches to the Theory of Choice
 in Risk-Taking Situations," Econometrica, XIX, 404-37 (Oct. 1951).
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 it must always be possible to specify, in a consistent way, that one
 outcome is better than, as good as, or worse than any other. And,
 if the certainty or probabilistic rules are employed, either the out-
 comes of particular alternatives must be known with certainty, or at
 least it must be possible to attach definite probabilities to outcomes.

 My first empirical proposition is that there is a complete lack of
 evidence that, in actual human choice situations of any complexity,
 these computations can be, or are in fact, performed. The intro-
 spective evidence is certainly clear enough, but we cannot, of course,
 rule out the possibility that the unconscious is a better decision-maker
 than the conscious. Nevertheless, in the absence of evidence that
 the classical concepts do describe the decision-making process, it
 seems reasonable to examine the possibility that the actual process is
 quite different from the ones the rules describe.

 Our procedure will be to introduce some modifications that
 appear (on the basis of casual empiricism) to correspond to observed
 behavior processes in humans, and that lead to substantial computa-
 tional simplifications in the making of a choice. There is no implica-
 tion that human beings use all of these modifications and simplifica-
 tions all the time. Nor is this the place to attempt the formidable
 empirical task of determining the extent to which, and the circum-
 stances under which humans actually employ these simplifications.
 The point is rather that these are procedures which appear often to
 be employed by human beings in complex choice situations to find
 an approximate model of manageable proportions.

 2.1 "Simple" Pay-off Functions
 One route to simplification is to assume that V(s) necessarily

 assumes one of two values, (1, 0), or of three values, (1, 0, -1), for all
 s in S. Depending on the circumstances, we might want to interpret
 these values, as (a) (satisfactory or unsatisfactory), or (b) (win, draw
 or lose).

 As an example of (b), let S represent the possible positions in a
 chess game at White's 20th move. Then a (+1) position is one in
 which White possesses a strategy leading to a win whatever Black
 does. A (0) position is one in which White can enforce a draw, but
 not a win. A (-1) position is one in which Black can force a win.

 As an example of (a) let S represent possible prices for a house an
 individual is selling. He may regard $15,000 as an "acceptable"
 price, anything over this amount as "satisfactory," anything less as
 "unsatisfactory." In psychological theory we would fix the boundary
 at the "aspiration level"; in economic theory we would fix the bound-
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 ary at the price which evokes indifference between selling and not
 selling (an opportunity cost concept).

 The objection may be raised that, although $16,000 and $25,000
 are both "very satisfactory" prices for the house, a rational individual
 would prefer to sell at the higher price, and hence, that the simple
 pay-off function is an inadequate representation of the choice situa-
 tion. The objection may be answered in several different ways, each
 answer corresponding to a class of situations in which the simple
 function might be appropriate.

 First, the individual may not be confronted simultaneously with

 _---- - ~ u 0()

 V(s)

 V,0 v-O -- …_ _ ____-___-------------…_-___

 FIGURE I W(s)

 a number of buyers offering to purchase the house at different prices,
 but may receive a sequence of offers, and may have to decide to
 accept or reject each one before he receives the next. (Or, more
 generally, he may receive a sequence of pairs or triplets or n-tuples
 of offers, and may have to decide whether to accept the highest of an
 n-tuple before the next n-tuple is received.) Then, if the elements S
 correspond to n-tuples of offers, V(s) would be 1 whenever the highest
 offer in the n-tuple exceeded the "acceptance price" the seller had
 determined upon at that time. We can then raise the further ques-
 tion of what would be a rational process for determining the accept-
 ance price.2

 2. See the Appendix. It might be remarked here that the simple risk func-
 tion, introduced by Wald to bring problems in statistical decision theory within
 the bounds of computability, is an example of a simple pay-off function as that
 term is defined here.
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 Second, even if there were a more general pay-off function, W(s),
 capable of assuming more than two different values, the simplified
 V(s) might be a satisfactory approximation to W(s). Suppose, for
 example, that there were some way of introducing a cardinal utility
 function, defined over S, say U(s). Suppose further that U(W) is a
 monotonic increasing function with a strongly negative second deriva-
 tive (decreasing marginal utility). Then V(s) = V{ W(s) } might be
 the approximation as shown on page 107.

 When a simple V(s), assuming only the values (+ 1, 0) is admis-
 sible, under the circumstances just discussed or under other circum-
 stances, then a (fourth) rational decision-process could be defined as
 follows:

 D. (i) Search for a set of possible outcomes (a subset, S' in S)
 such that the pay-off is satisfactory (V(s) = 1) for all these possible
 outcomes (for all s in S').

 (ii) Search for a behavior alternative (an a in A) whose possible
 outcomes all are in S' (such that a maps upon a set, Sa, that is con-
 tained in S').

 If a behavior alternative can be found by this procedure, then a
 satisfactory outcome is assured. The procedure does not, of course,
 guarantee the existence or uniqueness of an a with the desired
 properties.

 2.2 Information Gathering

 One element of realism we may wish to introduce is that, while
 V(s) may be known in advance, the mapping of A on subsets of S
 may not. In the extreme case, at the outset each element, a, may be
 mapped on the whole set, S. We may then introduce into the deci-
 sion-making process information-gathering steps that produce a more
 precise mapping of the various elements of A on nonidentical subsets
 of S. If the information-gathering process is not costless, then one
 element in the decision will be the determination of how farthemap-
 ping is to be refined.

 Now in the case of the simple pay-off functions, (+1, 0), the
 information-gathering process can be streamlined in an important
 respect. First, we suppose that the individual has initially a very
 coarse mapping of A on S. Second, he looks for an S' in S such that
 V(s) = 1 for s in S'. Third, he gathers information to refine that
 part of the mapping of A on S in which elements of S' are involved.
 Fourth, having refined the mapping, he looks for an a that maps on
 to a subset of S'.

 Under favorable circumstances, this procedure may require the
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 individual to gather only a small amount of information - an insig-
 nificant part of the whole mapping of elements of A on individual
 elements of S. If the search for an a having the desirable properties
 is successful, he is certain that he cannot better his choice by securing
 additional information.3

 It appears that the decision process just described is one of the
 important means employed by chess players to select a move in the
 middle and end game. Let A be the set of moves available to White
 on his 20th move. Let S be a set of positions that might be reached,
 say, by the 30th move. Let S' be some subset of S that consists of
 clearly "won" positions. From a very rough knowledge of the map-
 ping of A on S, White tentatively selects a move, a, that (if Black
 plays in a certain way) maps on S'. By then considering alternative
 replies for Black, White "explores" the whole mapping of a. His
 exploration may lead to points, s, that are not in S', but which are
 now recognized also as winning positions. These can be adjoined to S'.
 On the other hand, a sequence may be discovered that permits Black
 to bring about a position that is clearly not "won" for White. Then
 White may reject the original point, a, and try another.

 Whether this procedure leads to any essential simplification of
 the computation depends on certain empirical facts about the game.
 Clearly all positions can be categorized as "won," "lost," or "drawn"
 in an objective sense. But from the standpoint of the player, posi-
 tions may be categorized as "clearly won," "clearly lost," "clearly
 drawn," "won or drawn," "drawn or lost," and so forth - depending
 on the adequacy of this mapping. If the "clearly won" positions
 represent a significant subset of the objectively "won" positions, then
 the combinatorics involved in seeing whether a position can be trans-
 formed into a clearly won position, for all possible replies by Black,
 may not be unmanageable.4 The advantage of this procedure over
 the more common notion (which may, however, be applicable in the
 opening) of a general valuation function for positions, taking on
 values from -1 to 1, is that it implies much less complex and subtle
 evaluation criteria. All that is required is that the evaluation func-

 3. This procedure also dispenses with the necessity of estimating explicitly
 the cost of obtaining additional information. For further discussion of this point
 see the comments on dynamics in the last section of this paper.

 4. I have estimated roughly the actual degree of simplification that might be
 realized in the middle game in chess by experimentation with two middle-game
 positions. A sequence of sixteen moves, eight by each player, might be expected
 to yield a total of about 1024 (one septilion) legally permissible variations. By
 following the general kind of program just described, it was possible to reduce the
 number of lines of play examined in each of these positions to fewer than 100
 variations - a rather spectacular simplification of the choice problem.
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 tion be reasonably sensitive in detecting when a position in one of the
 three states- won, lost, or drawn - has been transformed into a
 position in another state. The player, instead of seeking for a "best"
 move, needs only to look for a "good" move.

 We see that, by the introduction of a simple pay-off function and
 of a process for gradually improving the mapping of behavior alterna-
 tives upon possible outcomes, the process of reaching a rational deci-
 sion may be drastically simplified from a computational standpoint.
 In the theory and practice of linear programming, the distinction is
 commonly drawn between computations to determine the feasibility
 of a program, and computations to discover the optimal program.
 Feasibility testing consists in determining whether a program satisfies
 certain linear inequalities that are given at the outset. For example,
 a mobilization plan may take as given the maximum work force and
 the steel-making capacity of the economy. Then a feasible program
 is one that does not require a work force or steel-making facilities
 exceeding the given limits.

 An optimal program is that one of the feasible programs which
 maximizes a given pay-off function. If, instead of requiring that the
 pay-off be maximized, we require only that the pay-off exceed some
 given amount, then we can find a program that satisfies this require-
 ment by the usual methods of feasibility testing. The pay-off require-
 ment is represented simply by an additional linear inequality that
 must be satisfied. Once this requirement is met, it is not necessary
 to determine whether there exists an alternative plan with a still
 higher pay-off.

 For all practical purposes, this procedure may represent a suffi-
 cient approach to optimization, provided the minimum required pay-
 off can be set "reasonably." In later sections of this paper we will
 discuss how this might be done, and we shall show also how the scheme
 can be extended to vector pay-off functions with multiple components
 (Optimization requires, of course, a complete ordering of pay-offs).

 2.3 Partial Ordering of Pay-Offs

 The classical theory does not tolerate the incomparability of
 oranges and apples. It requires a scalar pay-off function, that is, a
 complete ordering of pay-offs. Instead of a scalar pay-off function,
 V(s), we might have a vector function, V(s); where V has the com-
 ponents V1, V2, . . . A vector pay-off function may be introduced
 to handle a number of situations:

 1. In the case of a decision to be made by a group of persons,
 components may represent the pay-off functions of the individual
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 members of the group. What is preferred by one may not be pre-
 ferred by the others.

 2. In the case of an individual, he may be trying to implement a
 number of values that do not have a common denominator - e.g., he
 compares two jobs in terms of salary, climate, pleasantness of work,
 prestige, etc.;

 3. Where each behavior alternative, a, maps on a set of n possible
 consequences, Sa, we may replace the model by one in which each
 alternative maps on a single consequence, but each consequence has

 \ P\\\-OFFS
 J\\
 \ \ \SATISFACrORY

 I'VI

 FIGURE II

 PARTIAL ORDERING OF PAY-OFFS

 as its pay-off the n-dimensional vector whose components are the
 pay-offs of the elements of Sa.

 This representation exhibits a striking similarity among these
 three important cases where the traditional maximizing model breaks
 down for lack of a complete ordering of the pay-offs. The first case
 has never been satisfactorily treated - the theory of the n-person
 game is the most ambitious attempt to deal with it, and the so-called
 "weak welfare principles" of economic theory are attempts to avoid
 it. The second case is usually handled by superimposing a complete
 ordering on the points in the vector space ("indifference curves").
 The third case has been handled by introducing probabilities as weights

 h,v

 FIGUEI
 PRIALODRN FPYOF

 as its pay-off the n-d~~~~~~~~~imesoa etrwoecmoet r h

 The third case has been handled by introducing probabilities as weights
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 for summing the vector components, or by using principles like
 minimaxing satisfaction or regret.

 An extension of the notion of a simplified pay-off function permits
 us to treat all three cases in much the same fashion. Suppose we
 regard a pay-off as satisfactory provided that Vi ~ ki for all i. Then
 a reasonable decision rule is the following:

 E. Search for a subset S' in S such that V(s) is satisfactory for
 all s in S' (i.e., V(s) ~ k).

 Then search for an a in A such that Sa lies in S'.

 Again existence and uniqueness of solutions are not guaranteed.
 Rule E is illustrated in Figure II for the case of a 2-component pay-off
 vector.

 In the first of the three cases mentioned above, the satisfactory
 pay-off corresponds to what I have called a viable solution in "A
 Formal Theory of the Employment Relation" and "A Comparison
 of Organization Theories."5 In the second case, the components of
 V define the aspiration levels with respect to several components of
 pay-off. In the third case (in this case it is most plausible to assume
 that all the components of k are equal), ki may be interpreted as the
 minimum guaranteed pay-off - also an aspiration level concept.

 III. EXISTENCE AND UNIQUENESS OF SOLUTIONS

 Throughout our discussion we have admitted decision procedures
 that do not guarantee the existence or uniqueness of solutions. This
 was done in order to construct a model that parallels as nearly as
 possible the decision procedures that appear to be used by humans in
 complex decision-making settings. We now proceed to add supple-
 mentary rules to fill this gap.

 3.1 Obtaining a Unique Solution
 In most global models of rational choice, all alternatives are

 evaluated before a choice is made. In actual human decision-making,
 alternatives are often examined sequentially. We may, or may not,
 know the mechanism that determines the order of procedure. When
 alternatives are examined sequentially, we may regard the first satis-
 factory alternative that is evaluated as such as the one actually
 selected.

 If a chess player finds an alternative that leads to a forced mate
 for his opponent, he generally adopts this alternative without worry-

 5. Econometrica, XIX (July 1951), 293-305 and Review of Economic Studies,
 XX (1952-53, No. 1), 40-49.
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 ing about whether another alternative also leads to a forced mate. In
 this case we would find it very hard to predict which alternative
 would be chosen, for we have no theory that predicts the order in
 which alternatives will be examined. But in another case discussed

 above- the sale of a house - the environment presents the seller
 with alternatives in a definite sequence, and the selection of the first
 satisfactory alternative has precise meaning.

 However, there are certain dynamic considerations, having a
 good psychological foundation, that we should introduce at this point.
 Let us consider, instead of a single static choice situation, a sequence
 of such situations. The aspiration level, which defines a satisfactory
 alternative, may change from point to point in this sequence of trials.
 A vague principle would be that as the individual, in his exploration
 of alternatives, finds it easy to discover satisfactory alternatives, his
 aspiration level rises; as he finds it difficult to discover satisfactory
 alternatives, his aspiration level falls. Perhaps it would be possible
 to express the ease or difficulty of exploration in terms of the cost of
 obtaining better information about the mapping of A on S, or the
 combinatorial magnitude of the task of refining this mapping. There
 are a number of ways in which this process could be defined formally.

 Such changes in aspiration level would tend to bring about a
 "near-uniqueness" of the satisfactory solutions and would also tend
 to guarantee the existence of satisfactory solutions. For the failure
 to discover a solution would depress the aspiration level and bring
 satisfactory solutions into existence.

 3.2 Existence of Solutions: Further Possibilities

 We have already discussed one mechanism by which the existence
 of solutions, in the long run, is assured. There is another way of
 representing the processes already described. Up to this point little
 use has been made of the distinction between A, the set of behavior
 alternatives, and A, the set of behavior alternatives that the organism
 considers. Suppose now that the latter is a proper subset of the
 former. Then, the failure to find a satisfactory alternative in A may
 lead to a search for additional alternatives in A that can be adjoined
 to A.6 This procedure is simply an elaboration of the information-

 6. I might mention that, in the spirit of crude empiricism, I have presented
 a number of students and friends with a problem involving a multiple pay-off -
 in which the pay-off depends violently upon a very contingent and uncertain
 event - and have found them extremely reluctant to restrict themselves to a set
 of behavior alternatives allowed by the problem. They were averse to an alterna-
 tive that promised very large profit or ruin, where the relevant probability could
 not be computed, and tried to invent new alternatives whose pay-offs were less
 sensitive to the contingent event. The problem in question is Modigliani's "hot-

 1ll
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 gathering process previously described. (We can regard the elements
 of A that are not in A as elements that are initially mapped on the
 whole set, S.)

 In one organism, dynamic adjustment over a sequence of choices
 may depend primarily upon adjustments of the aspiration level. In
 another organism, the adjustments may be primarily in the set A: if
 satisfactory alternatives are discovered easily, A narrows; if it becomes
 difficult to find satisfactory alternatives, A broadens. The more
 persistent the organism, the greater the role played by the adjustment
 of A°, relative to the role played by the adjustment of the aspiration
 level. (It is possible, of course, and even probable, that there is an
 asymmetry between adjustments upward and downward.)

 If the pay-off were measurable in money or utility terms, and if
 the cost of discovering alternatives were similarly measurable, we
 could replace the partial ordering of alternatives exhibited in Figure II
 by a complete ordering (an ordering in terms of a weighted sum of the
 pay-off and the cost of discovering alternatives). Then we could
 speak of the optimal degree of persistence in behavior - we could say
 that the more persistent organism was more rational than the other,
 or vice versa. But the central argument of the present paper is that
 the behaving organism does not in general know these costs, nor does
 it have a set of weights for comparing the components of a multiple
 pay-off. It is precisely because of these limitations on its knowledge and
 capabilities that the less global models of rationality described here are
 significant and useful. The question of how it is to behave "rationally,"
 given these limitations, is distinct from the question of how its capabil-
 ities could be increased to permit action that would be more "rational"
 judged from the mountain-top of a more complete model.7

 The two viewpoints are not, of course, completely different, much
 less antithetical. We have already pointed out that the organism
 may possess a whole hierarchy of rational mechanisms - that, for
 example, the aspiration level itself may be subject to anadjustment
 process that is rational in some dynamic sense. Moreover, in many
 situations we may be interested in the precise question of whether one
 decision-making procedure is more rational than another, and to
 answer this question we will usually have to construct a broader
 criterion of rationality that encompasses both procedures as approxi-
 mations. Our whole point is that it is important to make explicit
 what level we are considering in such a hierarchy of models, and that

 dog stand" problem described in American Economic Review, Proceedings, XXXIX
 (1949), 201-8.

 7. One might add: "or judged in terms of the survival value of its choice
 mechanism."
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 for many purposes we are interested in models of "limited" rationality
 rather than models of relatively "global" rationality.

 IV. FURTHER COMMENTS ON DYNAMICS

 The models thus far discussed are dynamic only in a very special
 sense: the aspiration level at time t depends upon the previous history
 of the system (previous aspiration levels and previous levels of attain-
 ment). Another kind of dynamic linkage might be very important.
 The pay-offs in a particular trial might depend not only on the alterna-
 tive chosen in that trial but also on the alternatives chosen in pre-
 vious trials.

 The most direct representation of this situation is to include, as
 components of a vector pay-off function, the pay-offs for the whole
 sequence of trials. But then optimization would require the selection,
 at the beginning of the sequence, of a strategy for the whole sequence
 (see the Appendix). Such a procedure would again rapidly complicate
 the problem beyond the computational capacity of the organism. A
 possible middle ground is to define for each trial a pay-off function
 with two components. One would be the "immediate" pay-off (con-
 sumption), the other, the "position" in which the organism is left for
 future trials (saving, liquidity).

 Let us consider a chess game in which the players are paid off at
 the end of each ten moves in proportion to arbitrarily assigned values
 of their pieces left on the board (say, queen, 1; rook, 10; etc.). Then
 a player could adopt some kind of planning horizon and include in his
 estimated pay-off the "goodness" of his position at the planning
 horizon. A comparable notion in economics is that of the depreciated
 value of an asset at the planning horizon. To compute such a value
 precisely would require the player actually to carry his strategy
 beyond the horizon. If there is time-discounting of pay-offs, this has
 the advantage of reducing the importance of errors in estimating these
 depreciated values. (Time-discounting may sometimes be essential
 in order to assure convergence of the summed pay-offs.)

 It is easy to conjure up other dynamic complications, which may
 be of considerable practical importance. Two more may be men-
 tioned - without attempting to incorporate them formally. The
 consequences that the organism experiences may change the pay-off
 function - it doesn't know how well it likes cheese until it has eaten

 cheese. Likewise, one method for refining the mapping of A on S
 may be to select a particular alternative and experience its conse-
 quences. In these cases, one of the elements of the pay-off associated
 with a particular alternative is the information that is gathered about
 the mapping or about the pay-off function.
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 V. CONCLUSION

 The aim of this paper has been to construct definitions of
 "rational choice" that are modeled more closely upon the actual deci-
 sion processes in the behavior of organisms than definitions heretofore
 proposed. We have outlined a fairly complete model for the static
 case, and have described one extension of this model into dynamics.
 As has been indicated in the last section, a great deal remains to be
 done before we can handle realistically a more completely dynamic
 system.

 In the introduction, it was suggested that definitions of this kind
 might have normative as well as descriptive value. In particular,
 they may suggest approaches to rational choice in areas that appear
 to be far beyond the capacities of existing or prospective computing
 equipment. The comparison of the I.Q. of a computer with that of a
 human being is very difficult. If one were to factor the scores made
 by each on a comprehensive intelligence test, one would undoubtedly
 find that in those factors on which the one scored as a genius the other
 would appear a moron - and conversely. A survey of possible defini-
 tions of rationality might suggest directions for the design and use of
 computing equipment with reasonably good scores on some of the
 factors of intelligence in which present computers are moronic.

 The broader aim, however, in constructing these definitions of
 "approximate" rationality is to provide some materials for the con-
 struction of a theory of the behavior of a human individual or of
 groups of individuals who are making decisions in an organizational
 context. The apparent paradox to be faced is that the economic
 theory of the firm and the theory of administration attempt to deal
 with human behavior in situations in which that behavior is at least

 "intendedly" rational; while, at the same time, it can be shown that
 if we assume the global kinds of rationality of the classical theory the
 problems of internal structure of the firm or other organization largely
 disappear.8 The paradox vanishes, and the outlines of theory begin
 to emerge when we substitute for "economic man" or "administra-
 tive man" a choosing organism of limited knowledge and ability.
 This organism's simplifications of the real world for purposes of choice
 introduce discrepancies between the simplified model and the reality;
 and these discrepancies, in turn, serve to explain many of the phe-
 nomena of organizational behavior.

 8. See Herbert A. Simon, Administrative Behavior (Macmillan, 1947),
 pp. 39-41, 80-84, 96-102, 240-44.
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 APPENDIX

 EXAMPLE OF RATIONAL DETERMINATION

 OF AN ACCEPTABLE PAY-OFF

 In the body of this paper, the notion is introduced that rational

 adjustment may operate at various "levels." That is, the organism
 may choose rationally within a given set of limits postulated by the
 model, but it may also undertake to set these limits rationally. The
 house-selling illustration of Section 2.1 provides an example of this.

 We suppose that an individual is selling a house. Each day (or
 other unit of time) he sets an acceptance price: d(k), say, for the kth

 day. If he receives one or more offers above this price on the day in

 question, he accepts the highest offer; if he does not receive an offer
 above d(k), he retains the house until the next day, and sets a new

 acceptance price, d(k + 1).
 Now, if he has certain information about the probability dis-

 tribution of offers on each day, he can set the acceptance price so that

 it will be optimal in the sense that it will maximize the expected value,

 V[d(k)], of the sales price.

 To show this, we proceed as follows. Let Pk(y) be the probability

 that y will be the highest price offered on the kth day. Then:
 00

 (A.1) Pk(d) = fPk (y)dy
 d(k)

 is the probability that the house will be sold on the kth day if it has
 not been sold earlier.

 00

 (A.2) k(d)= y p(y,k)dy
 d(k)

 will be the expected value received by the seller on the kth day if the
 house has not been sold earlier. Taking into account the probability
 that the house will be sold before the kth day,

 k-1

 (A.3) Ek(d) = Ek(d) II (1 - Pj(d))
 j=1

 will be the unconditional expected value of the seller's receipts on the
 kth day; and

 115

This content downloaded from 
�������������149.10.125.20 on Tue, 25 Jan 2022 18:54:13 UTC������������� 

All use subject to https://about.jstor.org/terms



 QUARTERLY JOURNAL OF ECONOMICS

 (A.4) V{d(k)} =2Ek(d)

 will be the expected value of the sales price.
 Now we wish to set d(k), for each Ic, at the level that will maxi-

 mize (A.4). The k components of the function d(kc) are independent.
 Differentiating V partially with respect to each component, we get:

 aV oo aEk(d)
 (A.5) =v E((i =1...,n).

 ad(i) k=i ad(i)

 But:

 aEj(d) a8i (d)i-
 (A.6) E( (1 - Pj(d)), and

 ad(i) ad(i) j=1

 aEk(d) k-1 aPi(d) (A.7) P )dk(d) II (1 - ( - Pdj(i)! for i<k and ad (i) j 3i ad (i) i
 j=1

 OEk(d)
 (A.8) -0 for i > k.

 ad(i)

 Hence for a maximum:

 aV i-i
 (A.9) () = -d(i)pi(d) II (1 - Pj(d))

 ad (i) j=1
 k-i

 + T' ek (d) II (1 - Pi(d)) p(d) 0.
 k =i+l joi

 Factoring out pi(d), we obtain, finally:

 00 k-i

 (A.10) d(i) = k=i+l j- i
 I (1 - Pj(d))
 j=1

 00 kk-i

 2; 8k(d) II (1 - Pj(d)).
 k=i+l J=i+i

 For the answer to be meaningful, the infinite sum in (A.10) must

 converge. If we look at the definition (A.2) for 6k(d) we see this
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 would come about if the probability distribution of offers shifts
 downward through time with sufficient rapidity. Such a shift might

 correspond to (a) expectations of falling prices, or (b) interpretation
 of y as the present value of the future price, discounted at a sufficiently

 high interest rate.

 Alternatively, we can avoid the question of convergence by
 assuming a reservation price a(n), for the nth day, which is low enough

 so that Pn(d) is unity. We shall take this last alternative, but before

 proceeding, we wish to interpret the equation (A.10). Equation
 (A.10) says that the rational acceptance price on the ith day, d(i), is
 equal to the expected value of the sales price if the house is not sold
 on the ith day and acceptance prices are set optimally for subsequent

 days. This can be seen by observing that the right-hand side of
 (A.10) is the same as the right-hand side of (A.4) but with the summa-

 tion extending from k = (i + 1) instead of from (k = 1).9
 Hence, in the case where the summation is terminated at period

 n - that is, the house will be sold with certainty in period n if it has

 not been sold previously - we can compute the optimal d(i) by
 working backward from the terminal period, and without the necessity

 of solving simultaneously the equations (A.10).
 It is interesting to observe what additional information the seller

 needs in order to determine the rational acceptance price, over and
 above the information he needs once the acceptance price is set. He

 needs, in fact, virtually complete information as to the probability
 distribution of offers for all relevant subsequent time periods.

 Now the seller who does not have this information, and who will

 be satisfied with a more bumbling kind of rationality, will make

 approximations to avoid using the information he doesn't have.
 First, he will probably limit the planning horizon by assuming a price

 at which he can certainly sell and will be willing to sell in the nth

 time period. Second, he will set his initial acceptance price quite
 high, watch the distribution of offers he receives, and gradually and

 approximately adjust his acceptance price downward or upward until

 9. Equation (A.10) appears to have been arrived at independently by D. A.
 Darling and W. M. Kincaid. See their abstract, "An Inventory Problem," in the
 Journal of Operations Research Society of America, I, 80 (Feb. 1953).
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 he receives an offer he accepts - without ever making probability

 calculations. This, I submit, is the kind of rational adjustment that
 humans find "good enough" and are capable of exercising in a wide

 range of practical circumstances.
 HERBERT A. SIMON.

 CARNEGIE INSTITUTE OF TECHNOLOGY
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