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 The Economics of Traffic Congestion

 Rush-hour driving strategies that maximize an individual driver's
 convenience may contribute to overall congestion

 Richard Arnott and Kenneth Small

 Traffic congestion has become one of the plagues of modern life in a big
 city. Time spent ensnarled in traffic is
 not simply time wasted; for most of us,
 it is time miserably wasted.

 The dimension of the problem can
 be gauged from a simple back-of-the
 envelope calculation. In the 39 metro?
 politan areas in the United States with
 a population of one million or more,
 roughly one-third of all vehicular trav?
 el takes place under congested condi?
 tions in which speed averages half of
 its free-flow value. About half of this

 congested driving is on expressways,
 causing a delay of about six-tenths of a

 minute per kilometer of travel; the re?
 maining half is on other arterials, caus?
 ing about 1.2 minutes delay per kilo?

 meter of travel. With some 75 million
 licensed drivers in heavily populated
 areas, each averaging roughly 16,000
 kilometers per year within those areas,
 there are approximately 1,200 billion
 kilometers driven annually in metro?
 politan areas, bringing the total delay
 to 6 billion vehicle-hours each year.

 Research has shown that the cost of

 driving is quantifiable. Through their
 actual choices, drivers have demon?
 strated a willingness to pay, on average,
 about $1.33 to save 10 minutes travel
 time, or $8.00 per hour. This figure does

 not include the costs of disruption from
 the unpredictability of traffic delays, the
 costs of inconvenient schedules caused

 by attempts to avoid delays, nor the
 costs of extra fuel, accidents and air pol?
 lution. Even without taking all of these
 additional factors into account, the an?
 nual cost of driving delays comes to $48
 billion, or $640 per driver.

 Such congestion has policy-making
 itself in gridlock. Every policy consid?
 ered either is too unpopular, is too ex?
 pensive or has proven ineffective. Why
 is congestion so intractable, and what
 can be done?

 Answering these questions turns
 out to require a sophisticated under?
 standing of the behavioral interactions
 that determine when and where con?

 gestion occurs. Transportation re?
 searchers have identified three para?
 doxes in which the usual remedy for
 congestion?expanding the road sys?
 tem?is ineffective or even counter?
 productive. The resolution of these
 paradoxes employs the economic con?
 cept of externalities to identify and ac?
 count for the difference between per?
 sonal and social costs of using a
 particular roadway. This not only clar?
 ifies the economics of traffic conges?
 tion, but it also points to ways in

 which the congestion problem can be
 solved with clever applications of the
 standard pricing tools of economics.

 Intractable Congestion
 The standard remedy to traffic conges?
 tion is to "build our way out." Building
 our way out of the current jam, howev?
 er, would be prohibitively expensive.

 A few years ago, the Southern Califor?
 nia Association of Governments esti?
 mated the cost of accommodating ex?
 pected 25-year growth in the Los
 Angeles region through expansion of
 highways and new rapid-transit lines.
 Their cost estimate was $111 billion, a
 figure that now seems conservative in
 light of cost escalations in some recent
 projects. As urban areas grow more
 dense around existing facilities, plan?
 ning and building new capacity be?
 comes extraordinarily complex, expen?
 sive and politically controversial.

 There is, of course, the alternative
 solution of building new capacity in
 the form of mass transit. Experience
 shows that such an approach is unable
 by itself to attract more than a tiny frac?
 tion of the peak demand for highway
 facilities. Don Pickrell of the Trans?
 portation Systems Center in Cam?
 bridge, Massachusetts, meticulously
 documented the cost of each trip di?
 verted from cars to public transit for
 eight major rail transit projects. This

 was done by dividing the total annual
 ized cost of the system (including in?
 terest and depreciation on capital) by
 the annual number of transit riders

 who formerly used automobiles.
 For three of the projects, there was

 no diversion because the number of
 bus patrons who shifted to personal
 cars overshadowed the rise in rail pa?
 tronage. For the others, the cost (at to?
 day's prices) ranged from about $12 to
 $43 for each new transit trip. Achieving
 significant reductions in automobile
 congestion through subsidies of this
 magnitude is financially infeasible.
 Furthermore, the advantages of the car
 are simply too great: Not only does it
 provide considerably more comfort,
 privacy and convenience than mass
 transit, but it is also much better suited
 to the decentralized American city. The
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 Figure 1. Rush-hour congestion, even on the Golden Gate Bridge, can be a frustrating waste of time and money. Driving delays in large metropoli?
 tan regions in the United States cost tens of billions of dollars each year. Traditional solutions of expanding road capacity do not always relieve con?
 gestion, and in some paradoxical cases, may even make it worse. But economic measures may offer some help where road expansion does not.
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 Figure 2. Expanding road capacity creates its own demand, a phenomenon known as the Pigou
 Knight-Downs paradox. Because route 1, over the bridge, is the most direct route from point A
 to point B, more people want to use it, and the resulting congestion makes route 1 take as long
 as the more circuitous route 2. Travel time on each route is 15 minutes. Expanding the capacity of
 the bridge over route 1 only attracts more users, and the travel time remains unchanged. The
 paradox disappears only if the bridge capacity exceeds twice the total travel flow.

 Figure 3. Mathematical expression of the Pigou-Knight-Downs paradox shows that increasing
 the bridge capacity to any value less than twice the traffic flow has no effect on travel time (T2).
 Suppose that route 1 in Figure 2, the route over the bridge, takes 10 minutes with no traffic, but
 travel time rises linearly with the ratio of traffic flow (F2) to bridge capacity (C2). Route 2 always
 takes 15 minutes (T2). There are 1,000 travelers faced with the choice of route 1 or route 2. In sce?
 nario A, the bridge's capacity is defined as less than 2,000. The traffic flow over the bridge adjusts
 to 1/2Q, so that travel time on routes 1 and 2 are equal at 15 minutes. In scenario B, the bridge ca?
 pacity is increased to exceed 2,000. In that case, everyone uses the route with the bridge, but the
 travel time decreases, as can be seen in the example where bridge capacity equals 2,500.

 urban sprawl that was encouraged by
 massive subsidies to automobile travel
 in past decades cannot be reversed.

 Even if new highway construction
 and new mass transit were cheaper,
 building our way out of the problem
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 would be much harder than it might
 appear at first glance. One reason for
 this is a phenomenon called latent de?

 mand. The traffic we see does not repre?
 sent the full demand for peak travel at
 the prevailing monetary cost, since con

 gestion itself causes many potential
 rush-hour vehicle trips to be canceled,
 diverted (for example, to mass transit,
 to car pools and to less-congested routes
 and destinations) or rescheduled. Any
 reduction in congestion resulting from
 capacity expansion encourages others
 to drive during hours or on routes they
 ordinarily would not use. So measures
 to relieve congestion are at least partial?
 ly undone by latent demand.

 The other reason capacity expansion
 alone does not work is that congestion
 is mispriced. Because drivers do not
 pay for the time loss they impose on
 others, they make socially inefficient
 choices concerning how much to trav?
 el, when to travel, where to travel and
 what route to take. As the paradoxes
 will show, the combination of latent
 demand and mispriced congestion
 may be so perverse that an expansion
 of capacity brings about no change in
 congestion, or even makes it worse.

 Traffic Paradoxes
 The first of the paradoxes, the Pigou
 Knight-Downs paradox, helps to ex?
 plain why expanding road capacity
 can elicit new demand with no im?
 provement in congestion. Suppose
 1,000 peak-hour travelers between two
 cities can choose between a direct route

 containing a narrow bridge and a more
 circuitous, but wider, road, as illustrat?
 ed in Figure 2. The first route takes 10
 minutes with no traffic, but travel time
 rises linearly with the ratio of traffic
 flow (which we will call F2) to bridge
 capacity (C2). In the example, capacity
 is defined as the traffic flow at which

 the speed drops to half of the free-flow
 speed. Travel time (T2) therefore can be
 described as the 10 minutes it takes
 without traffic, plus the extra time it
 takes if the road is congested, as in the
 following equation:

 T2 = 10 + 10 (Fj/Q)

 The second route always takes 15
 minutes. Each traveler chooses the road

 with the lower travel time. As long as
 bridge capacity exceeds 2,000, the first
 route can accommodate all of the 1,000
 travelers and still takes less than the 15

 minutes of the second route. If bridge
 capacity is set at 2,500, for example,
 travel time is 14 minutes. Under these
 circumstances, everyone takes the
 shorter route, and there is no paradox.

 The paradox occurs when the bridge
 capacity, Cp is less than 2,000. In this
 case, travelers divide themselves across
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 the two routes, such that travel time on
 each route is 15 minutes, which implies
 that traffic flow over the bridge is exactly
 half its capacity. Therefore, expanding
 the bridge's capacity to anywhere in the
 range from 0 to 2,000 has absolutely no
 effect on anyone's travel time. Instead, it
 diverts more people from the route with
 spare capacity to the route crossing the
 bridge, In other words, the new bridge
 capacity generates its own demand.
 Attempts to reduce congestion on

 the bridge by instead encouraging car
 pooling, expanding mass transit or im?
 proving telecommunication facilities
 would likewise be frustrated unless to?
 tal vehicular traffic were reduced to be?

 low half of the bridge's capacity. So
 long as any traffic remained on the sec?
 ond route, latent demand for the
 bridge would undermine these at?
 tempts to relieve its congestion.

 The crux of the paradox lies in the
 distinction between the private and the
 social costs of a trip. The private cost is
 the cost the driver incurs. The social
 cost equals the private cost plus the ex?
 ternal cost, which is the cost the driver
 imposes on other drivers by slowing
 them down. In the example, the social
 cost of traveling on the bridge exceeds
 the private cost because it is congest?
 ed. Typically, drivers choose the route
 with the lower cost to them?the lower

 private cost. This results in an equilib?
 rium in which private costs on the two
 routes are equalized. If, instead, drivers
 were distributed across the two routes
 so as to equalize the social cost, the
 paradox would disappear; bridge ex?
 pansion would relieve congestion. This
 suggests that conventional policies to
 relieve congestion would work better
 if each driver faced the social cost of
 his or her trip.

 The second paradox, called the
 Downs-Thomson paradox, is even
 more perverse. The example of this
 paradox is like that of the previous
 paradox, except the alternative to tak?
 ing the congested route is now a pri?
 vately operated train line. The train op?
 erator breaks even financially by
 ensuring that all of the train cars are
 full. If more people take the train, then
 trains run more frequently, saving peo?
 ple some waiting time at the station. In
 this case, let us say that the maximum
 travel time by train is 20 minutes, and
 that 10 minutes will be cut from the trip
 for every 3,000 travelers. We can de?
 scribe the effect of the actual number of

 people using the train (F2) on travel

 Figure 4. Increased capacity leads to more, rather than less, congestion in the Downs-Thomson
 paradox. Here the second route, a passenger train, shows increasing returns with added flow
 because service quality improves as more travelers use it Expanding road capacity draws peo?
 ple off the train, worsening train service. Equilibrium between the two routes dictates that road
 travel becomes worse as well, such that increasing road capacity actually increases travel time
 on both routes.

 Scenario A: When C,< 1,000 '? : '^^aSM^^^^TV'.
 n=10* 10 (to ,;:^!^fv'

 Examples of equilibrium solutions:

 If C|? 250, then F, ? '1332 i^^|^*f^}p?^^^yX:
 If. C, - 750. then F, - 66r'i^Kj|?'^?'|?@^^^
 If C,-> 1.000, then F, iff

 Scenario B: When C, > 1,000 .V* :VV;

 F, = 1,000, F2 = 0f T, MG?Q^)
 Example: Suppose Cf = 2,000

 Then 7, = 15

 Figure 5. Downs-Thomson paradox, expressed mathematically, shows how increasing road ca?
 pacity in the situation in Figure 4 actually raises travel time, as long as the road capacity (C2) is
 smaller than the number of travelers. Suppose that the equation for travel time by the congested
 highway route (T2) is the same as in Figure 3; that the maximum travel time by train (t2) is 20 min?
 utes; and that 10 minutes will be cut from the train trip for every 3,000 travelers. Since there are
 1,000 total travelers, the number using the road (F2), plus the number using the train (f2) will equal
 1,000. In scenario A, at equilibrium, some of the travelers use the road, and others use the train.
 Under these conditions, as the road capacity approaches 1,000, travel time for each route, T2 and T2,
 approaches 20 minutes. In scenario B, the road capacity is expanded to exceed 1,000. All of the trav?
 elers use the road, so that the traffic flow over the road is 1,000, whereas the traffic on the train is

 zero. Expanding the capacity of the road to 2,000, for example, lowers travel time to 15 minutes.
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 Figure 6. Adding a link to a congested road network can cause everyone's travel time to go up.
 The Braess paradox shows how too much traffic may become attracted to the most congested
 route segments. Here the old routes each made use of only one bridge apiece. In contrast, the
 new causeway, route 3, entices half the travelers to choose a shorter route that takes them across
 both bridge A and bridge B, increasing congestion on both bridges and slowing traffic.

 Tfcalc^lbridgeA: + # 7^*000

 ,15:* T? T^S^^F^F^F^^
 Equilibrium^!
 F, + F2?X0M;F3?0
 rf? r2 fi s4 * (i ,ooo -

 So: F1?F2=SWrt?$g$
 Scenario B: Equilibrium vvith causeviay

 ff + F2 + F3 = 1,000 ?

 T, = T2=T3= 1511^ ilFaVIOO = 15 + (F2 + F3)/100 >
 7.5 + (F, + F2+^i00

 So: F1sF2-250, ^500, T, = T2 = T3 = 22.5

 Figure 7. Mathematical expression of the Braess paradox shows how travel time increases
 when the causeway is added. Both bridges are the congested points. (The time it takes to trav?
 el bridge A is expressed as TA, bridge B as TB; traffic flow on the bridges is expressed as FA and
 FB.) In scenario A, before the additional link, equilibrium is reached when the total time (Tj) to
 travel on route 1, over bridge A, is equal to the time (T2) to travel over route 2, which uses
 bridge B. Under these circumstances, the traffic flow on route 1 (F2) and the traffic flow on
 route 2 (F2) are each equal to 500 (half of the 1,000 travelers); the total travel time on each route
 is 20 minutes. In scenario B, the causeway has been added, so travelers have the choice of tak?
 ing this additional route, which we call route 3. Route 3 takes traffic over both bridges A and B,
 so the bridges become even more congested than before. Equilibrium is reached when travel
 times on all three routes, Tv T2 and T3, are equal. When this happens, traffic flow over route 3
 (F3) is 500 vehicles, and travel time on all three routes is 22.5 minutes.
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 time (T2) on the train, illustrated in Fig?
 ure 4, with the following equation:

 T2 = 20-10(F2/3,000)
 Each traveler chooses the faster

 mode, so that travel times are equal?
 ized when both modes are used. (The
 time it takes to travel on the road is de?

 scribed by the same equation used in
 the first paradox.) The equalized travel
 time is calculated in Figure 5.

 The intriguing feature of this situa?
 tion is that now travel time increases

 with any increase in bridge capacity
 within the range from 0 to 1,000. The
 reason is that, just as in the earlier ex?
 ample, capacity expansion diverts peo?
 ple to the congested road. But now the
 diversion causes train service to get
 worse, so equilibrium can occur only
 when congestion is worse also. Here,
 new capacity generates more than its
 own demand.

 The reason this paradox is even
 more perverse than the previous one is
 that there is not only an external cost
 imposed by each automobile user, as
 before, but there is now an external
 benefit created by each user of the train
 as well. This is because using the train
 causes the frequency of service to in?
 crease and hence reduces other users'
 waiting times. This is a technological
 property of all types of mass transit, in?
 cluding bus and even taxicab service,
 as was demonstrated in 1972 by Her?
 bert Mohring of the University of Min?
 nesota, who formulated a detailed
 model of a bus line, taking into account
 road speed, frequency of service and
 the extra time required for each pas?
 senger to get on or off at a bus stop.

 The same perverse result can be ob?
 tained if instead of expanding the road,

 well-intentioned planners entice some
 fraction of travelers away from both
 routes by providing some third alter?
 native such as subsidized vanpools,
 telecommuting centers?or even a new
 train service. Nor is this unrealistic:

 The cases studied by Pickrell included
 some where initiating a new train ser?
 vice diverted so much traffic from the

 existing transit system (in this case, bus
 transit) that the overall quality of tran?
 sit service deteriorated, causing a net
 diversion to automobiles and, presum?
 ably, a worsening of road traffic. Had
 the existing transit service been im?
 proved instead, the improvements
 might have reinforced, rather than
 thwarted, the external benefits inher?
 ent in transit service.
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 If, in our example, the bridge capac?
 ity is expanded to equal or exceed
 1,000, a very different thing happens.
 Capacity exceeds demand, and every?
 one starts using the road. The number
 of train users, F2, drops to zero. Now,
 further increasing the bridge capacity
 does reduce the travel time. For exam?

 ple, increasing capacity to 1,500 de?
 creases the travel time to 16.67 min?

 utes, the same time a train trip would
 take if all commuters traveled by train.
 Further increasing the road capacity
 lowers road travel time more, so the
 paradox disappears.

 The final paradox is the Braess para?
 dox, named for a German operations
 researcher who in 1968 described an
 abstract road network in which adding
 a new link causes total travel time to
 increase. Our version involves 1,000
 people traveling from district A of a
 city to district B, where the districts are
 separated by marshland, as pictured in
 Figure 6. District A lies south of a river
 at the west end of a marsh, and district
 B is north of the river at the east end of
 the marsh. Two routes connect A to B.

 Route 1, carrying traffic Fv crosses the
 river at bridge A and circles north of
 the marsh to B. Route 2, carrying traffic
 F2, circles south of the marsh and cross?
 es the river at bridge B. Travel on both
 routes is uncongested except at the
 bridges. Travel time on either route is
 15 minutes under uncongested condi?
 tions. Ten minutes travel time is added

 on either route for every 1,000 drivers
 going over its bridge, so that the total
 time for either route can be described
 as follows

 Tlor2 = 15 + 10(F2or2/l,000)

 At the point of equilibrium, where
 travel times on the two routes are
 equal, equal numbers of people use
 each route. Since there are 1,000 total
 travelers, this means that 500 are on
 each route. In that case, the time to
 travel on each route is 20 minutes.

 A causeway is then constructed
 across the marsh from the north end of

 bridge A to the south end of bridge B.
 The causeway can be traversed in 7.5
 minutes, regardless of traffic volume.
 There is now a third route from A to

 B?across bridge A, along the cause?
 way and then across bridge B. Its traffic
 is shown as F3 in Figure 6. What hap?
 pens when the causeway is opened?
 Each bridge now carries the traffic for
 two distinct routes, the previous one
 plus the route over the causeway. Now

 there are two ways to approach bridge
 B, either by route 2 or by the causeway
 route 3. The total traffic flow over
 bridge B becomes the sum of the two
 inflowing routes. Likewise the total
 flow over bridge A becomes the sum of
 the total flows for both routes 1 and 3.

 Travel time for bridges A and B can be
 rewritten as follows:

 TA = 10 (FA/1,000) = 10 (F3 + F3)/l/000
 TB = 10 (FB/1,000) = 10 (F2 + F3)/1,000

 Traffic will be in equilibrium when
 travel times on all three routes are
 equal, a condition that gives two equa?
 tions. The three traffic volumes add up
 to 1,000 vehicles, as we have defined
 the total peak-hour usage, so we can
 readily solve for all three traffic flows
 as follows:

 Tt = T2 = T3 = 15 + 10 (F2 + F3)/1,000
 = 15 + 10 (F2 + F3)/1,000
 = 7.5 + 10 (F2 + F2 + 2F3)/1,000,

 so that:

 F2 = F2 = 250;F3=500;
 T1 = T2 = T3 = 22.5 minutes.

 The result shows that half the traffic

 takes the causeway route, and the other
 half divides evenly between the two
 previous routes. Hence each bridge car?
 ries 750 travelers, 50 percent more than
 before, producing a travel time on each
 route of 22.5 minutes, as opposed to the
 20 minutes it took before the causeway
 was constructed. Adding the causeway
 has made everyone's trip longer.

 The paradox is explained by conges?
 tion externalities on the bridges; that is,
 because each traveler ignores the exter?
 nal cost he or she imposes by crossing
 a bridge, too many people choose the
 causeway route, which crosses both
 bridges. The faster the causeway, the
 more people are enticed to take it, and
 the worse is their trip. If causeway-tra?
 versal time were only 5 minutes, all
 1,000 would choose that route, and
 travel time would rise to 25 minutes.

 Only if the causeway speed were infi?
 nite would equilibrium travel time re?
 turn to its original 20 minutes.

 Are these paradoxes more than intel?
 lectual curiosities? It has been claimed
 that the Braess paradox explains some
 traffic problems observed in Stuttgart,

 Manhattan and Oslo. Martin Mogridge
 of University College, London, has
 forcefully, if controversially, asserted
 that the Downs-Thomson paradox ex?
 plains the deterioration of road speeds
 over 20 years or so in central London.

 As for the Pigou-Knight-Downs para?
 dox, it is so enshrined in transportation
 planning that it is often called "the fun?
 damental law of traffic congestion."

 Externalities and Pricing
 The concept of externalities provides a
 powerful tool for analyzing congestion
 in a more general context. An external?
 ity is brought about when a person
 does not face the true social cost of an
 action. By modeling congestion sys?
 tematically, it is possible to define the
 social cost of driving on a congested
 road by observing how aggregate trav?
 el delays are related to the number of
 travelers. Combining this with a model
 of demand for the road, one can deter?
 mine both equilibrium travel patterns
 (as in the above examples) and optimal
 travel patterns under some defined ob?
 jective such as minimizing aggregate
 travel time.

 In order to apply the concept of ex?
 ternalities, we need to convert travel
 time to a cost. For simplicity, let us ig?
 nore the out-of-pocket costs of travel.
 Assume also that everyone places an
 identical monetary value on each

 minute of travel time. Multiplying
 travel time (T) by this monetary value
 then gives the private cost of a trip.

 The existence of congestion implies
 that this travel time depends on the
 traffic flow, F. Thus we obtain the
 curve relating private cost to traffic
 flow shown in Figure 8. The lower
 (solid) part of the curve, marked pc(F),

 where private cost is increasing as
 flow increases, corresponds to situa?
 tions of modest congestion and lends
 itself to analyzing the congestion ex?
 ternalities discussed earlier. At any
 level of flow, one can calculate total
 cost as the flow F multiplied by each
 driver's private cost pc(F). Then it is
 possible to calculate how much total
 cost increases when flow is increased
 by one unit, which is referred to as the
 social cost of a trip. This quantity,
 known as the social cost of a trip, is
 plotted as sc(F) in Figure 8. By defini?
 tion, the social cost of a trip equals the
 private cost plus the external cost?the
 cost the added driver imposes on others
 by slowing them down. Thus the exter?
 nal cost equals the vertical distance be?
 tween the social cost and private cost
 curves. (Because drivers impose exter?
 nal costs on each other, multiplying the
 social cost curve by flow does not lead
 to a meaningful total cost.) A more
 complete analysis would also consider
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 Figure 8. Maximum efficiency and equilibri?
 um do not occur at the same point; they are
 separated by the difference between the cost
 of road usage to an individual (the private
 cost) and the social cost The private cost of
 using a road, pc(F), rises with the traffic flow
 (f) because of congestion. This implies that
 each one-unit increment to F raises total cost

 F x [pc(F)] by an amount called the social (or
 marginal) cost of a trip, which exceeds the pri?
 vate cost, as shown. The social cost is written

 mathematically as sc(F) = pc(F) + F x [d(pc)ldF],
 where d(pc) and d? are the change in private
 cost and the change in traffic flow, respec?
 tively. The social cost exceeds the private cost
 by F x [d(pc)/dF], which is called the external
 social cost of a trip because it represents the
 cost that is imposed by a traveler on others. If
 the demand curve is D(F), equilibrium occurs
 at point A. But the efficient solution would be
 at point B, where the marginal trip is just

 worth its social cost. At the efficient solution,
 the external cost of a trip is r. This is the toll
 that, if charged, would shift the equilibrium
 from A to B.

 the social costs of noise, air pollution
 and so forth.

 The demand for using a road is gen?
 erally some flat or downward-sloping
 function of the private cost. (In the
 paradoxes it was flat, an extreme case
 in which we assume that each route is
 a perfect substitute for the alterna?
 tives.) Such a relationship is shown in
 Figure 8 as D(F). Equilibrium occurs at
 point A, where the demand curve in?
 tersects the private-cost curve; at this
 level of flow the benefit of an extra trip
 equals its private cost. Efficiency reach?
 es its maximum at point B, where the
 benefit of an extra trip equals its social
 cost. In equilibrium, travel is under
 priced because drivers do not pay for
 the congestion they cause. Conse?
 quently, too many trips are taken.

 The trick for planners is to create
 conditions under which the system op

 452 American Scientist, Volume 82

 erates at point B instead of at point A.
 The solution is simply to charge a pay?
 ment, known as a congestion toll,
 equal to the external cost. In Figure 8,
 the optimal congestion toll t is mea?
 sured by the vertical distance between
 the social and the private cost curves
 at point B. By thus bringing the private
 cost faced by the traveler up to the lev?
 el of the social cost, privately-made de?
 cisions will lead to the social optimum
 (point B).
 We can see how this approach might

 work to relieve the congestion predict?
 ed by the Downs-Thomson paradox in
 Figure 4. The simplicity of demand for
 the two alternative modes of travel in

 this paradox permits a diagrammatic
 analysis of the private and social costs
 on both routes. In Figure 9 one can vi?
 sualize both the paradox itself (an equi?
 librium, also called a user optimum)
 and the cost-minimizing traffic pattern
 (a social optimum or system opti?

 mum). It is drawn for the case that the
 capacity of route 1 is equal to 750. The
 private cost pc2 and social cost sc2 of
 travel by car on the congested route are
 plotted as functions of flow Fp starting
 with an original flow of 0, so that we
 designate this initial point as the first
 origin Ov The corresponding costs of
 train travel are plotted backwards, as
 a function of passenger flow F2 on the
 train with 02 as its origin. The distance
 between the origins is 1,000, ensuring
 that F1+F2 = 1,000. Note that the social
 cost of car travel exceeds its private
 cost. But the social cost of train travel

 is less than its private cost, reflecting
 the external benefit that each train user

 confers on other train users by caus?
 ing the frequency of service to increase
 and waiting time to decrease. The
 equilibrium, at point A, occurs where
 the number of travelers using each

 mode of transportation (car or train)
 equalizes the private costs?in this ex?
 ample, two-thirds travel by car.

 The social optimum, at point B, oc?
 curs when travelers are divided be?
 tween the two modes in such a way as
 to equalize the social costs?in this case
 one-sixth of the travelers go by car. Un?
 der these circumstances, switching one
 traveler from car to train, or vice versa,
 neither increases nor decreases the so?

 cial cost of accommodating that travel?
 er. At this division, the private costs by
 car and train (measured by the heights
 of lines pc2 and pc2) are both lower than
 they were at point A. But because they
 are not equal, this point is not an equi

 librium. However, by imposing a road
 toll equal to the difference, people will
 be led to choose the social optimum.

 It can be shown that the total private
 cost associated with point B decreases
 as road capacity Q is expanded. Hence
 when social costs, rather than private
 costs, are equalized, the paradox dis?
 appears. Note that in this example, the
 road toll is interchangeable with a train
 subsidy. In real situations, however,
 there are so many substitutes for peak
 hour car and train travel that this equiv?
 alence breaks down. In such cases, the
 theory calls for a road toll of sct - pct
 and a train subsidy of pc2- sc2, both
 measured at point B.

 These examples illustrate a policy
 known as congestion pricing. Versions
 of it have been implemented or are be?
 ing considered in Europe, Asia and in
 the United States. Congestion pricing
 is also an example of marginal-cost
 pricing, a term with much broader
 meaning. Briefly, marginal-cost pricing
 refers to setting the price of a unit of a
 commodity equal to the incremental
 social cost of producing one more unit
 of the commodity. Mathematically,
 marginal cost is the derivative of the
 total-cost function. In the traffic con?

 text, the social cost of a trip is the incre?
 ment in total cost to all travelers caused

 by adding one more trip; by facing the
 trip maker with this social cost, society
 effectively sets the full price of the trip
 (including both money and time) equal
 to its marginal cost.

 One concern that crops up with con?
 gestion pricing is the overall welfare of
 the travelers. If one regards people
 only in their roles as travelers, every?
 one is made worse off by being forced
 to pay a toll that raises the cost of using
 the road, even with a reduction in con?
 gestion. (Our paradoxes illustrate ex?
 treme cases where travelers are not

 made worse off.) But travelers are also
 citizens, so one must consider what
 happens to the toll revenues. Paying a
 toll, after all, does not use up resources;
 it is only a paper transaction?or, more
 likely, an electronic one. If the toll rev?
 enues are used to benefit citizens gen?
 erally, the gains people receive as citi?
 zens more than offset their losses as
 travelers. In fact, the more formal state?

 ment of "efficiency" is precisely this:
 There is some way of redistributing the
 toll revenues that leaves everyone as

 well, or better, off.

 To show how this could happen, we
 return to the first example, the Pigou
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 Knight-Downs paradox. If all 1,000
 travelers value their time equally, the
 efficient traffic allocation across routes

 minimizes aggregate travel time. The
 efficient allocation occurs at the point
 where the number of vehicles using the
 bridge equals one-quarter the bridge's
 capacity, with the remainder of vehi?
 cles taking the longer route. According
 to the formula for congestion on the
 bridge, the travel time on the bridge
 route is 12.5 minutes. The other travel?
 ers use the second route, which has a
 travel time of 15 minutes. The aggre?
 gate travel time is described as follows:

 1/4Q x 12.5 + (1,000 - 1/4Q) x 15 =
 15,000 - 0.625Q minutes

 Suppose, for example, that capacity
 Q were exactly 1,600. In the efficient al?
 location, 400 travelers take the bridge

 with travel time 12.5 minutes, while the
 other 600 travelers take the longer route
 with a travel time of 15 minutes. Ag?
 gregate travel time is 14,000 minutes,
 Sie lowest possible with this capacity.
 For the sake of simplicity, suppose time
 is valued at 10 cents per minute; this
 traffic allocation can then be achieved

 by charging a toll of 25 cents for cross?
 ing the bridge, since then, everyone's
 trip cost is $1.50, either in time (for
 users of the longer route) or in time
 plus toll (for bridge users). This is the
 same trip cost that prevailed in the un?
 priced equilibrium; thus it is easy to al?
 locate all of the $100 in toll revenue so
 that everyone is better off.

 In more realistic examples, it would
 probably not be possible to target the
 redistribution of toll revenues so care?

 fully that everyone was made better off
 by a toll. Hence in practice, congestion
 pricing (or any policy change) can be
 justified only if it is acceptable to make
 some people worse off when the over?
 all gains are enough. Some argue that
 this is justified because the existing sys?
 tem of highway finance subsidizes dri?
 vers, so the proposed change actually
 corrects an existing inequity.
 We asserted earlier that all the para?

 doxes disappear if every driver pays
 the social cost of his or her travel. Thus

 with (optimal) congestion pricing, ex?
 pansion of capacity always creates
 benefits (which, of course, must be
 weighed against the cost of expansion).
 We have just shown this in the exam?
 ple of the Pigou-Knight-Downs para?
 dox: Application of the efficient con?
 gestion toll results in aggregate travel
 time equal to 15,000 - 0.625Q, which

 falls with expansion of the bridge. We
 invite the reader to check our assertion

 for the other two paradoxes.
 Congestion pricing has the added

 advantage that it makes transportation
 planning easier. Whether or not con?
 gestion pricing is employed, the merits
 of a proposed expansion of a trans?
 portation link can be evaluated by com?
 paring the cost of expansion with the
 total cost savings it produces. In the ab?
 sence of congestion pricing, calculation
 of these cost savings requires knowing
 how the expansion will alter traffic
 flows and travel times over the entire

 network. But with congestion pricing,
 the savings can be evaluated knowing
 only the traffic flow on that link.

 A final, and very important, point
 concerning congestion is that some
 traffic congestion is usually optimal.
 Congestion could be eliminated entire?
 ly by prohibiting travel or by spending
 vast sums on transportation systems.
 And it could probably be reduced to
 negligible levels by requiring that trips
 be evenly spread over the 24 hours of
 the day. But any of these solutions

 would generate social costs far exceed?
 ing the current costs of congestion.

 Huge benefits from concentrating eco?
 nomic activity within a geographical
 location derive from the reduction of
 transport costs (even with congestion).
 There are also great advantages from
 schedule coordination?having people
 work or play at common times. Con?
 gestion is simply a cost that goes hand
 in hand with these benefits. Conges?
 tion pricing ensures that a given level
 of benefit is achieved at minimum con?

 gestion cost.

 Practical Pricing?
 Economists have advocated congestion
 pricing for at least three decades, since
 the pioneering work of William Vick
 rey of Columbia University. They have
 failed, however, to overcome a number
 of counterarguments, including costly
 and inconvenient toll collection, espe?
 cially on downtown streets; regressive
 distributional impact, since lower-in?
 come people spend a larger proportion
 of their income on commuting and
 have less work-schedule flexibility;
 lack of trust in government to dispose
 of toll revenues wisely; and benefits
 that in some cases are so small as to be

 insignificant.

 1,000

 Figure 9. Downs-Thomson paradox can be resolved by bringing private costs in line with ex?
 ternal social costs. The paradox depicted in Figure 4 disappears when social costs, rather than
 private costs, are equalized for the two travel alternatives, the road versus the train. Here, pri?
 vate cost pct and social cost sc2 of travel by car on the congested route are plotted as a function
 of flow Fp with 02 as the origin. The corresponding costs of train travel are plotted backwards,
 as a function of passenger flow F2 on the train, with 02 as its origin. Equilibrium occurs at
 point A, and the social optimum is at point B. At point B, switching one traveler from car to
 train, or vice versa, neither increases nor decreases the social cost of accommodating that trav?
 eler. Imposing a road toll equal to (sc2 - pc2) and subsidizing the train fare by (sc2 - pc2) will
 lead people to choose the social optimum.
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 The case for congestion pricing is sig?
 nificantly stronger today. Because of
 worsening congestion and financial
 constraints, the public is more receptive
 to pricing solutions. A recent survey in
 London, for example, found that a ma?
 jority of automobile commuters would
 favor congestion pricing if the revenues

 were used to upgrade the transport sys?
 tem. Other proposals for using the toll
 revenues address the impacts on in?
 come distribution. As for the benefits
 of pricing, a new generation of models
 that take into account trip rescheduling
 produce estimates of benefits many
 times larger than earlier work based on
 a rush hour of fixed duration. These
 models, introduced by Vickrey and fur?
 ther developed by one of us (Arnott) in
 collaboration with Andre de Palma of
 the University of Geneva and C. Robin
 Lindsey of the University of Alberta,
 constitute today an active research fron?
 tier populated by both economists and
 traffic engineers.

 The most important development
 affecting the prospects for congestion
 pricing, however, is the enormous ad?
 vance in technology for toll collection.
 A pioneering electronic road-pricing
 scheme tested in Hong Kong a decade
 ago appears to have been a complete
 success from an engineering and eco?
 nomic standpoint. The basic idea is
 simple. Each car is equipped with a de?
 vice that can emit a personalized sig?
 nal. As the car travels along, its signal
 is activated and picked up by roadside
 receptors at designated charging
 points. A central computer records the
 charges and periodically sends each
 car owner a bill based on that car's
 travel history. Enforcement is based on
 photographing license plates of cars
 failing to emit the signal when queried
 electronically. Another variation is to
 have prepayments coded on a "smart
 card" mounted in the vehicle, thereby
 elimmating the need to record the ve?
 hicle's location.

 Commercial equipment is readily
 available, and electronic toll collection

 454 American Scientist, Volume 82
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 Figure 10. Oklahoma's Pikepass program is an example of electronic toll collection. Pikepass, im?
 plemented in 1991 on the state's 478-mile Turnpike system, uses a palm-sized integrated-circuit
 card mounted behind a vehicle's rear-view mirror. The card responds to a radio beacon emitted

 by a transmitter beside special Pikepass entry lanes, which are identified by an overhead sign. A
 charge is automatically deducted from the user's prepaid account. Users need not stop or slow
 down. Video cameras record license plates of violators. About 100,000 vehicles currently partici?
 pate, and the revenues collected from Pikepass participants account for almost one-third of Ok?
 lahoma's annual toll revenues. Such systems can easily be adapted to vary the toll depending on
 time of day, as is now done in Norway and will be done in 1995 on privately built express lanes
 on the Riverside Freeway in California. (Photographs courtesy of Amtech Inc.)

 is now in operation on toll highways or
 bridges in many places, including Ok?
 lahoma, Texas, Florida, France, Italy
 and Norway These have proven that
 existing technology can handle road
 pricing transactions quickly and effi?
 ciently without appreciably slowing

 traffic. A sophisticated system of con?
 gestion pricing using such technology

 will be implemented on a new private?
 ly operated roadway in the median
 strip of the Riverside Freeway in South?
 ern California that is slated for comple?
 tion in 1995.
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 Today, the remaining practical prob?
 lems of implementation are much nar?
 rower and appear amenable to solution
 by the usual kinds of development ef?
 forts implemented for any public poli?
 cy. For example, every system needs to
 specify an option for occasional travel?
 ers who lack an electronic device. Pro?

 tection of privacy (a major factor in
 Hong Kong's decision not to imple?
 ment the system it tested) is quite fea?
 sible, but conflicts to some degree with
 the need for tracing to correct mistakes.

 How finely tuned the pricing system
 should be is a question involving
 trade-offs between efficiency and sim?
 plicity. At one extreme, the city of
 Cambridge, England, considered a
 pricing system that would depend on
 actual congestion encountered mo?
 ment by moment.

 Political acceptability, however, re?
 mains the key. A well-designed and
 credible plan for spending the toll rev?
 enues is essential. Only with such a
 plan can the public be assured that a
 proposed pricing scheme would pro?
 vide needed financing for transporta?
 tion improvements, offset at least some
 of the regressive distributional impact
 of the tolls and protect against misap

 propriation of the revenues for waste?
 ful purposes.
 Whatever the prospects for conges?

 tion pricing, it is clear that congestion
 is a more complex phenomenon than
 some of our current policy analyses as?
 sume. It is also clear that some of the
 common-sense solutions do not solve
 the problem. Only by understanding
 the full nature of people's travel deci?
 sions and how they interact can sensi?
 ble policies be formulated.
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