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ABSTRACT

The authors present a method for analyzing the economic benefits to the United States resulting from

changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. The method

begins by constructing reduced-formmodels of the effect of drought on agriculture and reservoir recreation in

the contiguous United States. These relationships are then applied to drought projections based on two

climate stabilization scenarios and two twenty-first-century time periods. Drought indices are sector specific

and include both the standardized precipitation index and the Palmer drought severity index. It is found that

themodeled regional effects of drought on each sector are negative, almost always statistically significant, and

often large in magnitude. These results confirm that drought has been an important driver of historical re-

ductions in economic activity in these sectors. Comparing a reference climate scenario to twoGHGmitigation

scenarios in 2050 and 2100, the authors find that, for the agricultural sector, mitigation reduces both drought

incidence and damages through its effects on temperature and precipitation, despite regional differences in

the sign and magnitude of effects under certain model scenarios. The current annual damages of drought

across all sectors have been estimated at $6–$8 billion (U.S. dollars), but this analysis shows that average

annual benefits of GHG mitigation to the U.S. agricultural sector alone reach $980 million by 2050 and

upward of $2.2 billion by 2100. Benefits to reservoir recreation depend on reservoir location and data

availability. Economic benefits of GHG mitigation are highest in the southwestern United States, where

drought frequency is projected to increase most dramatically in the absence of GHG mitigation policies.

1. Introduction

Droughts in the United States can have pronounced

economic effects on a wide variety of water-dependent

activities. Statewide costs to agriculture of the 2014

California drought have been estimated at $2.2 billion

(U.S. dollars), with a loss of 17 000 seasonal and part-

time jobs (Howitt et al. 2014). In the Colorado River

basin, the longest drought in 100 years had left Lakes

Mead and Powell at just over half their capacities as of

2007; and in the Klamath River basin on the Oregon–

California border, a severe drought combined with en-

vironmental flow requirements caused a 96% reduction

in total net agricultural revenues in 2001 (Boehlert and

Jaeger 2010). The recent widespread drought in the

Mississippi River system caused $30 billion in impacts

(NCDC 2013), including slowed barge traffic (Bjerga

2012) and crop and livestock losses that resulted in $16

billion in crop insurance claims in 2012 (Washington
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Post, 22 March 2013). Although these recent regional

events have gained broad attention, water shortages

are a nationwide issue. Average annual damages of

drought in the United States are $6–$8 billion, which is

greater than the annual losses incurred from either

flooding ($5.9 billion) or hurricanes ($5.1 billion; NWS

2002). In future years, water managers and policy

makers will face increased drought planning challenges

as demand for water rises and supplies fall (Adams and

Peck 2009). Climate change could exacerbate these is-

sues by altering the location, timing, frequency, and in-

tensity of future droughts.

Based on a broad review of recent studies, the U.S.

National Climate Assessment reports that, in most of

the central and southern United States, droughts are

projected to become more frequent under higher emis-

sions scenarios (Melillo et al. 2014). Using hydrological

model runs from downscaled general circulationmodels,

Cayan et al. (2010) find that drought duration and se-

verity, based on soil moisture depletion will increase in

the southwesternUnited States. In a global study, Burke

et al. (2006) project that, by 2100, droughts will affect

30% of worldwide land area, up from only 1% of land

area at present. However, some research suggests, but

does not conclusively show, that greenhouse gas (GHG)

mitigation may offset some of these effects (e.g.,

Strzepek et al. 2010). Strzepek et al. (2010) characterize

U.S. drought risk under a suite of 22 Intergovernmental

Panel on Climate Change (IPCC) climate models and

three Special Report on Emissions Scenarios (SRES)

emissions scenarios. They find that drought frequencies

are considerably lower under lower emissions scenarios.

In this paper, we present a method for analyzing

economic benefits in the United States of changes in

drought frequency and severity due to global GHG

mitigation. Although many sectors of the U.S. economy

are affected by drought, our analysis focuses on two

large sectors that have sufficient data available to char-

acterize these economic impacts: crop-based agriculture

and reservoir recreation. The method follows several

steps in order to estimate the future effects of drought on

economic outcomes. We first estimate reduced-form

relationships between fluctuations in historical drought

frequency and severity and historical fluctuations in

crop-based agricultural output and reservoir visitation.1

We then project the effect of global GHGmitigation on

drought frequency and severity in four future time

periods in the twenty-first century, based on the outputs

of several climate scenarios. Last, we estimate the eco-

nomic effect of GHG mitigation by coupling the statis-

tical relationships between drought and economic

outcomes in each sector with the effect of mitigation on

drought frequency and severity.

2. Methods

We first describe the drought indicators used in our

analysis, then provide the structure and statistical re-

lationships from the reduced-form models, and finally

describe howweusemodel results to predict the effects of

climate change and GHG mitigation on the damages of

drought in each economic sector included in the analysis.2

The analysis of each of the two sectors considers two

climate stabilization scenarios, along with a reference

scenario, over four twenty-first-century time periods. For

each sector, the chosen spatial unit and drought indicator

vary depending on the sector’s characteristics.

a. Drought indicators

From the supply side, drought can be defined as per-

sistent arid conditions that affect the hydrological cycle,

for example by lowering streamflow, reducing reservoir

levels, or depleting soil moisture (Gonzalez and Valdes

2006; Keyantash and Dracup 2002). Drought can also be

defined for specific sectors of the economy. Agricultural

drought is defined as the difference between water

supply and crop demand. For rainfed agriculture, a year

of normal precipitation may actually result in water-

stressed crops if the growing season is abnormally warm.

On the other hand, irrigated crops facing a warmer/drier

growing period may receive adequate supplies from a

reservoir filled to capacity by an above-normal snow-

melt from winter precipitation.

We focus on definitions of drought most relevant to

the sectors analyzed in this study. For reservoir recrea-

tion, we rely on the standardized precipitation index

(SPI), which is a statistically defined measure of drought

based on precipitation alone.3 For agriculture, we use

1Reduced-form models are simplified in that they identify re-

lationships between variables directly, rather than building amodel

based on theories of the economy, as is the practice with a

structural-form approach.

2 Note that the drought index selection and processing methods

presented here closely follows the approach of Strzepek et al.

(2010) in their characterization of U.S. drought risk under a suite of

22 IPCC climate models. We also employ drought projections de-

scribed by Strzepek et al. (2015).
3 Note that while temperature can affect water available for

recreation (i.e., by increasing reservoir evaporation and increasing

downstream water demand), we do not estimate this effect directly

in the drought projections. Also note that the second stage of the

reservoir regression equation does incorporate temperature as an

explanatory variable to account for the effect of temperature on

reservoir visitation.
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the Palmer drought severity index (PDSI), which in-

corporates temperature effects and better reflects soil

moisture conditions. We model the historical SPI and

PDSI measures of drought frequency and severity, and

these are then used as explanatory variables in reduced-

form models of the agricultural and reservoir recreation

sectors. For historical climate data, we use monthly

temperature and precipitation from 1900 to 2009 across

the contiguous 48 states at a spatial resolution of

2.5min 3 2.5min (approximately 4 km 3 4 km; PRISM

Climate Group 2012); these data are aggregated to the

state and river basin levels for the agricultural and

recreation analyses, respectively. The indices and their

calculations are described below.

1) STANDARDIZED PRECIPITATION INDEX

The SPI is a probability index that measures the degree

to which precipitation in a given time period and geo-

graphic area diverges from the historical median (McKee

et al. 1993). An SPI of zero indicates rainfall is at the

median value, where half of historical precipitation is

above the value and half is below. A moderate drought’s

SPI ranges from 20.75 to 21.25; a severe drought’s SPI

ranges from 21.25 to 21.55; an extreme drought’s SPI

ranges from21.55 to22.0; and an exceptional drought’s

SPI is less than 22.0 (Svoboda 2009).

To estimate the SPI value for a given year, we follow

the statistical approach outlined byEdwards andMcKee

(1997). We first create a gamma probability density

function (PDF) based on the time series of annual pre-

cipitation (all years) in the baseline dataset, and for each

spatial unit of interest. The gamma density function has

been shown to be an appropriate model for rainfall

(Thom 1951, 1966). Next, for each PDF, we develop a

cumulative density function (CDF) based on nonzero

precipitation values in the dataset (the gamma function

is undefined at zero) and then shift the starting point of

the CDF to account for the fraction of zeros in the

dataset. Last, the CDF is transformed to a standard

normal distribution with mean zero and variance of one,

which is the value of the SPI. This is an equiprobability

transformation: the probability of being less than a

particular value of the transformed standard normal

variate is the same as the probability of being less than

the corresponding value of the gamma variate (Edwards

and McKee 1997). The SPI value for precipitation in a

particular year in the baseline or projected period is then

the position of that precipitation value on the trans-

formed standard normal distribution. As our goal is

evaluating the effect of climate change on drought fre-

quency and occurrence, the standard normal distribu-

tion for a given spatial unit is fixed based on historical

data. Consequently, if the occurrence and/or severity of

extremely dry years systematically increases or de-

creases under climate change, these changes will be

observed in the resulting SPI values.

The reservoir recreation sector relies on water

storage accumulated over many months, so we employ a

12-month SPI to estimate the occurrence and severity of

annual droughts for this sector. To account for the lag

between precipitation and reservoir water levels, annual

precipitation for a given year is defined as the sum of

monthly precipitation between October of the previous

year and September of the year in question. For exam-

ple, the annual precipitation for 1974 would be the sum

of monthly precipitation between October 1973 and

September 1974.

2) PALMER DROUGHT SEVERITY INDEX

PDSI is a drought indicator that uses data on soil

characteristics, precipitation, and potential evapotrans-

piration (based in part on temperature) to determine the

water balance of a region (Palmer 1965, 1968). PDSI is

generally calculated on a monthly time scale but con-

siders both current meteorological conditions and those

of past months, accounting for the cumulative nature of

TABLE 1. Variables included in agriculture analysis. The dependent variable is percentage change in total crop output.

Variable name Description

Variable

type

outputti Dependent variable; natural log of the value of 1960–2004 crop outputs in real terms, in

year t and state i

Continuous

mildModDroughtti Indicator variable equal to 1 when state-level PDSI in the growing season in year t is

less than 21 and greater than 23

Binary

sevExtDroughtti Indicator variable equal to 1 when state-level PDSI in the growing season in year t is less than 23 Binary

mxTempti Indicator variable equal to 1 when the state-level maximum monthly average temperature in

the growing season in year t is in the 15th percentile of the historical distribution

Binary

statei State-level fixed effect Binary

trend Time trend Discrete

Eti Error term —

JULY 2015 BOEHLERT ET AL . 257

This content downloaded from 
�������������149.10.125.20 on Thu, 27 Jan 2022 16:47:56 UTC������������� 

All use subject to https://about.jstor.org/terms



drought (NOAA 2010). A PDSI value of 0 is considered

normal, 21 is a mild drought, 22 is a moderate

drought, 23 is a severe drought, and 24 is an extreme

drought. Positive PDSI numbers, on the other hand,

reflect wetness in excess of normal conditions. Because

of its focus on soil moisture as a primary indicator of

drought, PDSI is particularly appropriate for agricul-

tural droughts.4 For further discussion of PDSI, see

Alley (1984) and Karl and Knight (1985). To estimate

PDSI values for future years, we first transform general

circulation model (GCM) outputs into monthly po-

tential evapotranspiration data using the modified

Hargreaves method (Droogers and Allen 2002) and

then generate monthly PDSI values, following pro-

cedures outlined by Palmer (1965, 1968).

b. Reduced-form models

Our reduced-form sectoral models describe the sta-

tistical relationship between drought occurrence and

economic impacts within each sector and will be used to

estimate the benefits or damages of drought under dif-

ferent climate scenarios. In the agriculture model, eco-

nomic output from the crop sector is the dependent

variable. In the reservoir recreation model, reservoir

visitation is the dependent variable. Below, we describe

the models’ formulations, their data sources, and the

empirical relationships they generate.

1) AGRICULTURE MODEL

The appropriate model for measuring climate change

impacts on agriculture is subject to debate within the

economics literature. A Ricardian (or hedonic) model

was first used to assess the economic impacts of climate

change on agriculture (Mendelsohn et al. 1994). This

model takes advantage of cross-sectional variation in

climate to estimate the impact of climate change on either

agricultural revenue or land value under the assumption

that spatial variation in land values reflects underlying

differences in climate, holding all else constant.

The Ricardian model is attractive in theory, but diffi-

culties arise empirically. To obtain econometrically con-

sistent estimates of the impact of climate on land values,

the Ricardianmodel must be correctly specified; that is, it

must account for all variables—both observed and

unobserved—that impact agricultural land values or

revenues and are correlated with climate. Note that,

according to the Frisch–Waugh theorem, uncorrelated

variables can be excluded from themodel without biasing

the estimated climate coefficients. Various studies have

shown that observable variables like soil quality, water

supply, and socioeconomic characteristics are correlated

with temperature and precipitation (Schlenker et al. 2005;

Deschenes and Greenstone 2007). It is therefore plausi-

ble that unobserved variables also vary with climate,

subjecting the hedonic model to omitted variable bias.

In an effort to circumvent the issue of omitted variable

bias, some economists have opted to use panel data with

fixed effects to measure the impact of climate change on

agriculture (e.g., Deschenes and Greenstone 2007;

Schlenker and Roberts 2009). In general, these models

relate annual agricultural revenues or profits to changes

in weather variables over time, including fixed effects at

TABLE 2. Agriculture regression model output. The dependent variable is the percentage change in total crop output (over the

1960–2004 period).

Variable

Coefficient

Eastern Western

Mild-to-moderate drought 20.017* 20.049**

Severe-to-extreme drought 20.044** 20.12**

Max temperature 20.096** 20.09**

Trend 0.013** 0.021**

Constant 212.37** 229.39**

States included in region AL, AR, CT, DE, FL, GA, IA, IL, IN, KY,

LA, MA, ME, MD, MI, MO, MN, MS,

NC, NH, NJ, NY, OH, OK, PA, RI, SC,

TN, VA, VT, WI, WV

AZ, CA, CO, ID, KS, MT, ND, NE, NM,

NV, OR, SD, TX, UT, WA, WY

R2 0.57 0.81

Number of observations 1440 (32 states 3 45 yr) 720 (16 states 3 45 yr)

* Significant at the p , 0.1 level.

** Significant at the p , 0.01 level.

4 Like SPI, PDSI does not consider runoff, snowmelt, or water

storage and therefore may not account for water supplies effec-

tively, particularly west of the Continental Divide. See Quiring and

Papakryiakou (2003) and Vicente-Serrano et al. (2012) for com-

parisons between drought indices.
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the spatial and/or temporal level. By including fixed

effects, these models account for any time-invariant

characteristics that covary with weather. One draw-

back, however, is that the fixed effect captures differ-

ences in climate, so this model can only estimate the

impact of weather on agriculture.

With these econometric challenges in mind, we use a

state-level panel dataset from 1960 to 2004 to estimate

the impacts of annual variation in drought on the total

value of crop output, conditional on weather variables,

state-level indicator variables, and a time trend. Data on

state-level crop output were provided by the U.S. De-

partment of Agriculture’s (USDA) Economic Research

Service (ERS; E. Ball 2013, personal communication;

Ball et al. 2004, 2011, 2013).5 Crop output reflects the sum

of the value of the following categories: crops sold off the

farm, additions to inventory, and quantities consumed as

part of final demand, as well as the value of goods and

services closely linked to agricultural production (e.g.,

processing and packaging agricultural products on the

farm and machine services for hire). Ball et al. (2004,

2013) constructed this dataset in order to isolate changes

in state-level agricultural productivity over time. In doing

so, they divided the total value of outputs into two com-

ponents: an aggregate price index that accounts for in-

flation and short-run price responses to change in crop

supply, and an aggregate output measure that is valued

using a temporally constant price (fixed at 1996 price

levels; we adjusted these to 2005 dollars) to place these

estimates of changes in output in an economic context.

This removes the effects of both inflation and short-run

price responses to changes in crop supply so that variation

in the aggregate output dataset is attributable to changes

in productivity and shocks resulting from climatic vari-

ability and extreme events. Note that using this dataset,

which allows us to statistically isolate the effects of

drought on production, causes the resulting economic

estimates to ignore price effects.

Drought occurrence is measured using the average

growing season (March–September) PDSI over those

agricultural counties that account for 80% of crop

acreage within each state. We also include a maximum

monthly temperature variable to account for implica-

tions of extreme heat on agriculture, which are not

captured in the PDSI calculation.6 State-level indicators

capture time-invariant state-level characteristics that

impact crop output. This accounts for agricultural in-

puts, such as the amount of land and labor in production

(which vary little over time) and soil quality character-

istics. A time trend accounts for explanatory variables

that are not included in the model but have driven

changes in crop outputs over time (e.g., technology).

Note that if climate change has changed the frequency

or severity of droughts between 1960 and 2004, there

FIG. 1. Reservoir locations. Note that the following reservoirs are dropped from the eco-

nomic analysis because of data and statistical modeling limitations: Cherry Creek Lake, Belton

Lake, and Blue Marsh Lake.

5 Data provided by the USDA ERS via e-mail correspondence

on 6 February 2013. Further details on this dataset and its other

applications is provided at the following USDA URL: http://www.

ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx.

6 Numerous other climate variables that may affect yields in-

clude minimum temperature (i.e., effect of frosts), hail, or strong

winds. These were excluded for two reasons: 1) these other vari-

ables are unlikely to cause the widespread damage caused by ex-

treme heat events; and 2) hail and wind data are not available at an

appropriate scale from climate models.
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would be a correlation between drought occurrence and

the trend. The correlation between the year variable

with the mild-to-moderate and severe-to-extreme

drought variables is 20.04 and 20.10, respectively,

suggesting minimal covariance. On a related note, as

climate has changed, so too has the portfolio of crops

and water infrastructure in each state. As these charac-

teristics change, so too does the sensitivity of agriculture

to drought. We tested the effect of including an in-

teraction term between drought occurrence/severity and

the time trend and of including one trend for 1960–79

and another for 1980–2004, but we found that neither

structure improved model performance.

The impact of weather on agricultural output is fun-

damentally different for irrigated and rainfed crops

(Schlenker et al. 2006). To account for this difference,

we run separate models for states east and west of the

100th meridian, an approximation of the rainfall line in

the United States.7 To the east of the 100th meridian,

rainfall generally exceeds 20 in. yr21; to the west, pre-

cipitation is generally less. As such, farming west of the

100th meridian is typically possible only with use of ir-

rigation (Schlenker et al. 2006).8

Equation (1) below shows the basic model form.

Correlations between explanatory variables are low,

ranging from 20.18 to 0.14. A description of variables

and data sources is provided in Table 1. We employ a

log-linear specification so we can interpret the inverse

logs of the coefficients on drought variables as per-

centage change in the total value of crop output when

mild/moderate or severe/extreme drought occurs.9

log(outputti)5b01b1mildModDroughtti

1b2sevExtDroughtti 1b3mxTempti

1b4statei 1b5trend1 «ti (1)
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7 Note that another alternative would be including the percent-

age of irrigation in each state as an explanatory variable, but such a

variable is likely to have high correlationwith the state fixed-effects

variable. This fixed-effects variable provides a constant term for

each state in the analysis, which allows us to capture many un-

observable state-level differences and thus develop a much more

parsimonious model.
8 Although drought in the east would influence demand for agri-

cultural goods grown in the west and vice versa, this would primarily

cause changes in the distribution of crops and in total agricultural

revenues rather than in per hectare crop productivity, which is our

dependent variable.
9 Note that past research (e.g., Attavanich andMcCarl 2014) has

found that crop yields may respond nonlinearly to technological

progress and climate variables. We tested a quadratic trend term,

but model performance did not improve.
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As documented in Table 2, under this regression

specification, mild-to-moderate droughts do not have

statistically significant impacts on the total value of crop

output in the east but do in the west. Severe-to-extreme

droughts and the remaining explanatory variables are all

significant in both regions of the contiguous United

States. The western states are more sensitive to drought,

with a 12% reduction in the total value of crop output

under severe drought conditions, compared to a 4.4%

reduction in the east.

2) RESERVOIR RECREATION MODEL

The relationship between droughts and reservoir

recreation is indirect; droughts influence reservoir

levels, which, in turn, affects visitation by restricting

access to docks, beaches, and other amenities.10 Several

prior studies examine the relationship between either

reservoir elevations or river flowandwater-based recreation.

For example, Cameron et al. (1996) performed a case

study on federal reservoirs and rivers in the Columbia

River basin to examine the relationship between rec-

reation demand and reservoir elevations. Ward (1987)

used a travel cost model to estimate the potential rec-

reational demand on Rio Chama in New Mexico. Al-

though this study focuses on river flows rather than

reservoir elevations, the authors showed a potential

return of $900–$1100 per acre foot of water released

from reservoirs to increase instream flows, demon-

strating the potentially high value of water for recrea-

tional activity.

We construct a two-stage statistical model to estimate

the impact of drought on reservoir visitation. We

follow a case-study approach because data on reservoir

visitation are not available for the entire contiguous

United States. Specifically, we look at historical drought

occurrence, reservoir levels, and visitation at reservoirs

that historically experience high levels of fluctuation as a

result of regional drought events. Locations of the res-

ervoirs included in our analysis, which were selected

based on data availability, are shown in Fig. 1. Note that,

although eight reservoirs are shown in the figure, three

of the reservoirs—Belton, Blue Marsh, and Cherry

Creek Lakes—were omitted from results presentation

for reasons discussed below. Information on these

reservoirs, including location, managing agency, avail-

able recreation activities, and nearby municipalities and

substitute sites is provided in Table 3.

In the first-stage regression, we model historical av-

erage annual water level (elevation) at each reservoir

as a function of long-term drought, represented by the

average 12-month SPI within each reservoir drainage

basin. The U.S. Army Corps of Engineers (USACE)

provided data on lake elevation (J. Custer 2013, personal

communication).11 We lag the 12-month SPI variable

3 months behind the reservoir water level so that the ef-

fects of cumulative drought have time to sufficiently influ-

ence reservoir management, which in turn may affect lake

levels. Accordingly, the first-stage regression for each

reservoir is given by Eq. (2). Correlation between mod-

erate drought and severe-to-exceptional drought is20.14.

A description of the variables is provided in Table 4.

levelt 5b0 1b1ModDroughtt 1b2sevExcDroughtt 1 «t

(2)

Although only multimonth droughts affect the man-

agement of large reservoirs, reservoir water level affects

recreational activity on a monthly, weekly, or even daily

time step. Consequently, the second stage of the model

focuses on the relationship between monthly visitation

(provided by USACE) and monthly water levels at each

reservoir, along with other explanatory variables.

Monthly water levels are categorized according to re-

source impact levels (ILs) defined by the Corps. The ILs

for each reservoir correspond to unique water levels that

reflect tipping points where recreational opportunities

fall sharply as lake levels decline. These ILs include

points at which large numbers of boat docks, boat

launches, and beaches become unusable. For modeling

purposes, we assume that a change in lake level only

affects visitation when it crosses an IL. The three ILs

defined by the Corps include the initial impact level

(IIL), wherein some boat launching ramps are unusable

and most beaches are unusable; the recreation impact

level (RIL), wherein more ramps are not usable and all

beaches are unusable; and the water access limited

(WAL), wherein all or most boat ramps are out of ser-

vice and all beaches are unusable.

The second-stage regression model includes binary

variables for each of the three impact levels, which

take a value of one if the lake level (from the first-stage

regression) falls within the impact level range for that

10 Note that drought, if correlated with air temperature, could

also increase demand for reservoir recreation. Correlation between

air temperature and moderate drought occurrence over the reser-

voir catchments is 0.17, and correlation between air temperature

and severe/extreme drought occurrence over the catchments is

0.25. This suggests there may be a mild positive relationship be-

tween drought and visitation that is not captured in this analysis.

11 Data provided by the USACE Recreation Program via e-mail

correspondence on 14 March 2013 and 22 March 2013.
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month and zero otherwise. This stage is restricted to

include data for only the months of May through Sep-

tember, which reflects the peak recreation season in

many reservoir systems. Under alternative regressions

that included data for a wider range ofmonths, visitation

was much less sensitive to changes in lake levels.

Henceforth, when we refer to visitation changes and

corresponding economic effects, these impacts are only

referring to this peak recreation season.

The log–log model form was used to conduct the re-

gression analysis. With this model specification, the re-

gression coefficients on all continuous variables can be

interpreted as elasticities: that is, the percentage change in

visitation that would occur with a percentage change in

the level of each explanatory variable, holding all other

explanatory variables constant. The inverse logs of the

coefficients for binned impact level variables represent

the percentage change in peak season visitation that

would occur when moving from the no-impact level into

IIL, RIL, or WAL. Accordingly, the second-stage re-

gression is given by Eq. (3). Correlations between all ex-

planatory variables are between 20.16 and 0.16, except

for the relationship between local municipal population

and average temperature, which is 0.34. A description of

the variables included is presented in Table 5.12

log(Visits)5b0 1b1IIL1b2RIL1b3WAL

1b4 log(Pop)1b5 log(P)b6 log(T)

1b7 log(Days)1 « (3)

As documented in Table 6, under first-stage re-

gression, the relationship of reservoir elevation to both

moderate droughts and severe-to-exceptional droughts

tends to be negative and statistically significant, with the

exception of Blue Marsh Lake, which also has an ex-

ceptionally poor overallR2 value. Historical BlueMarsh

elevations never exceed the impact levels in more than

99% of observations, so the regression specification is

unable to identify adequately the relationship between

visitation and elevation.

The second-stage regression (Table 7) generally shows

significant reductions in reservoir visitation when reser-

voir elevation declines across impact levels, with larger

reductions associatedwith higher impact levels. Note that

for two of the reservoirs, Belton and Cherry Creek, we

find a positive relationship between transitions into the

initial impact level and visitation. This counterintuitive

finding is partly the result of too few lake level observa-

tions that were below the IIL levels but may also suggest

an omitted variable that is positively correlated with both

visitation and lower reservoir elevations.

Visitation forecasts can be translated into dollar

amounts (i.e., recreational use value), then compared

across climate scenarios to assess impacts to visitors’ eco-

nomic welfare. Using a benefit transfer approach, we re-

viewed the recreation valuation literature for studies with

sound approaches and relevant geographic foci to the

reservoirs evaluated in this study (e.g., Eiswerth et al. 2000;

Fadali and Shaw 1998; Jakus et al. 2000).13 The outcome

was a set of per trip unit values reported in consumer

surplus terms. Note that, because this approach is focused

on the consumer surplus implications of changes in visi-

tation, any effects on regional producers from decreases or

increases in visitor expenditures will not be captured.

TABLE 4. Variables included in first-stage regression for reservoir recreation analysis. The dependent variable is the historical average

annual water level (elevation) at each reservoir as a function of long-term drought, represented by the average 12-month SPI within each

reservoir drainage basin.

Variable name Description Variable type Units

levelt Dependent variable; average annual water level

of the reservoir in year t

Continuous ft MSL

ModDroughtt Indicator variable equal to 1 when 12-month SPI in

year t is less than 20.75 and greater than 21.25

Binary —

severeExcDroughtt Indicator variable equal to 1 when 12-month

SPI in year t is less than 21.25

Binary —

Et Error term — —

12Note that price (or distance traveled) is not included as an

explanatory variable in this formulation, whichmay lead to omitted

variable bias. The effect on the results of omitting this variable is

uncertain.

13 The economics literature is mixed on how well benefit transfer

performs compared to values developed in primary studies. For

example, Parsons and Kealy (1994) compared the results of several

hypothetical benefit transfers to those of a random utility model

(RUM) and found that the benefit transfers methodologies on

average deviated less than 10% from the RUM values. On the

other hand, Kirchhoff et al. (1997) and others have found that

applying benefit transfer can result in large errors, even for similar

amenities.
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c. Projecting the effects of GHG mitigation on
drought frequency and severity

To translate the above relationships into projections

of the economic effects of global GHG mitigation, we

project the frequency and severity of future drought

under a range of climate scenarios, apply the reduced-

form relationships to these projections, and then

evaluate the differences in economic outcomes under

mitigation and reference emission scenarios. We apply

a set of climate scenarios that include alternative

emission policies to evaluate the benefits of mitigation.

Specifically, we employ climate projections developed

using the National Center for Atmospheric Research

(NCAR) Community Atmospheric Model (CAM),

which is built into the Integrated Global System

Modeling (IGSM) framework (Monier et al. 2015).

The IGSM-CAM projections provide the primary

projections for this paper. However, since the IGSM-

CAM represents a single GCM pattern, simplified

representations of other GCM patterns were employed

to analyze the structural uncertainties associated with

GCM selection in the contiguous United States. Two

additional GCM patterns were used to produce

a range of temperature and precipitation futures:

MIROC3.2 (medres) and CCSM3. Compared to other

GCMs for the contiguous United States, these two

GCMpatterns project hotter/drier and less-hot/wetter

patterns, respectively.14 Monier et al. (2015) describes

the details of this IGSM pattern-scaling methodology,

as well as how projections compare to an ensemble

mean and the IGSM-CAM simulations. These two

additional GCM patterns are run under the same set

of climate scenarios (described below) as the IGSM-

CAM.

Characteristics of the three emissions scenarios

employed in this analysis are presented in Table 8.15

GHG emissions from human activities, and the resulting

climate change impacts and damages depend on future

socioeconomic development (e.g., population growth,

economic development, energy sources, and techno-

logical change). Emissions scenarios provide scientifi-

cally credible starting points for examining questions

about an uncertain future and are illustrations of how

the release of different amounts of climate-altering

gases and particles into the atmosphere will produce

different climate conditions in the United States and

around the globe. Table 8 provides information on

the characteristics of each emissions scenario in 2100.

Similar to the representative concentration pathways

(RCPs) used by IPCC in its Fifth Assessment Report,

the Climate Change Impacts and Risk Analysis (CIRA)

project scenarios are based on different GHG emissions

and different trajectories of radiative forcing—a metric

of the additional heat added to Earth’s climate system

caused by anthropogenic and natural emissions. These

three scenarios include a business-as-usual future, in

which GHG emissions continue to increase unchecked

to 10Wm22 of radiative forcing [referred to as the ref-

erence scenario (REF)], a stabilization scenario in which

total radiative forcing levels are at 4.5Wm22 by 2100

(POL4.5), and a more stringent stabilization scenario

with forcing levels at 3.7Wm22 by 2100 (POL3.7).16

TABLE 5. Variables included in second-stage regression for reservoir recreation analysis. The dependent variable is visitation at the

reservoir.

Variable name Model variable name Variable type Units

Visitation at reservoir Visits Continuous Count of people

Initial impact level IIL Binary —

Recreation impact level RIL Binary —

Water access limited WAL Binary —

Nearest municipal population Pop Continuous Count of people

Monthly precipitation P Continuous mm

Monthly average temperature T Continuous 8C
No. of weekend days Days Continuous Count of days per month

Error term E Continuous —

14 Note that by ‘‘less hot,’’ we mean that the CCSM pattern

projects less warming than many of the other GCM signatures; it

still projects warming relative to the historical baseline.

15 These GHG emission scenarios and climate projections were

developed for and applied in the CIRA project, a multisector

analysis of the damages of inaction and benefits of global GHG

mitigation (see Waldhoff et al. 2015).
16 These scenarios were developed using the Emissions Pre-

dictions and Policy Analysis (EPPA) model, which is the human

systems component within IGSM. EPPA provides projections of

world economic development and emissions, including analysis of

proposed emissions control measures, such as limiting emissions

from major emitting sectors like electricity production and trans-

portation [see Paltsev et al. (2015) for more details].
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To convert the raw IGSM-CAM and MIROC and

CCSM pattern-scaled outputs to inputs suitable for the

SPI and PDSI calculations, we evaluated the changes in

temperature and precipitation projected by the GCM,

combined these changes with a baseline dataset from the

PRISM Climate Group at Oregon State University

(PRISM Climate Group 2012), and then aggregated

these projections to the state and river basin levels.17We

used these temperature and precipitation time series to

estimate future PDSI and SPI drought projections for

each emissions scenario and for each of four 30-yr pe-

riods centered on 2025, 2050, 2075, and 2100. The impact

of GHG mitigation on drought projections is equal to

the difference between the number of droughts in each

severity category under the policy case (POL3.7 or

POL4.5) and the REF case.

While the northeastern United States is projected to

experience reductions in 12-month SPI drought fre-

quency under the IGSM-CAMREF scenario because of

rising precipitation, the southwesternUnited States could

experience pronounced increases in drought frequency

by the 2050 and 2100 periods. Changes in seasonal PDSI

drought frequency were similar to those of SPI; however,

the magnitude and pattern of changes differ somewhat,

because PDSI is cumulative and considers temperature in

calculating the index value. As with SPI, the largest in-

creases in drought frequency under the IGSM-CAM

REF are in the southwestern United States. Following

these patterns, for both SPI and PDSI, GHG mitigation,

as estimated in the POL3.7 and POL4.5 scenarios, sub-

stantially decreases drought frequency in the southwest-

ern United States and moderately increases drought

frequency in parts of the eastern United States.18

Figures 2 and 3 provide an overview of the effect of global

GHG mitigation on the total number of severe and ex-

treme (i.e., the sum of these two severity categories) SPI

and PDSI droughts that occur over a 40-yr period across

the contiguous United States under the IGSM-CAM

policy and reference scenarios. Again, these positive

U.S.-wide effects represent the net outcome of positive

effects inwestern states offset partially by negative effects

in eastern states.

Figures 4 and 5 illustrate the effect of mitigation on

SPI and PDSI droughts under the MIROC (hotter/drier

pattern) and CCSM (less-hot/wetter pattern) simula-

tions. Under MIROC, GHG mitigation substantially

reduces SPI drought occurrence in the states west of the

Mississippi and south of Idaho; as with the IGSM-CAM

signal, mitigation increases drought occurrence under

MIROC over the northeastern United States. Under

CCSM, on the other hand, GHG mitigation causes

moderate increases in SPI drought frequency over the

majority of the United States, with the largest increases

occurring over a broad band of the central and south-

eastern United States. The spatial patterns are similar

for the effect of GHG mitigation on PDSI occurrence.

However, PDSI incorporates temperature, and because

temperature is consistently lower under mitigation sce-

narios, PDSI droughts are projected to fall more

TABLE 6. Results from the first-stage recreation regression. The dependent variable is the reservoir elevation (over the 2000–10 period).

Variable

Coefficient

Belton

Lake (TX)

Benbrook

Lake (TX)

Blue Marsh

Lake (PA)

Carters

Lake (GA)

Cherry

Creek

Lake (CO)

Lake

Cumberland

(KY)

Lake

Hartwell

(GA and SC)

New

Hogan

Lake (CA)

Moderate drought 22.71 22.43a 0.27 23.24b 20.40 22.91 24.27a 223.06b

Severe-to-exceptional

drought

24.90b 26.20a 20.04 23.74a 21.52c 215.84a 26.84a 240.38b

Constant 595.33a 693.28a 287.52a 1071.96a 5550.01a 710.01a 658.66a 663.33a

R2 0.20 0.55 0.02 0.32 0.19 0.40 0.61 0.41

No. of observations 30 29 22 35 40 30 40 30

a Significant at the p , 0.01 level.
b Significant at the p , 0.05 level.
c Significant at the p , 0.1 level.

17 PRISM is a high-resolution gridded (2.5 3 2.5min) dataset of

monthly precipitation and temperature variables over the contig-

uous United States.

18 Importantly, note that this finding pertains only to drought

occurrence rather than the overall effects of mitigation. If mitiga-

tion has the effect of dampening large projected increases in pre-

cipitation in the eastern United States, this will increase drought

frequency relative to a wetter future with unmitigated climate

change, but it may also reduce flood occurrence and other conse-

quences of a wetter future, such as water logging of root zones. As a

result, the net effects of mitigation in the eastern United States,

particularly on agriculture, may very well be positive.
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consistently across the contiguous United States than

SPI droughts.

d. Projecting the economic effects of GHGmitigation

Using the statistical relationships described in section

2b, we estimate the economic effect of unmitigated cli-

mate change by imposing the associated drought pro-

jections on the historical relationship between drought

and each sector’s dependent variable. Although drought

frequency/severity, estimated from the climate pro-

jections, vary over time, most of the remaining variables

are fixed at their average historical values, with the ex-

ceptions noted below. We update agricultural output

figures from 1982 levels (the average in the ERS dataset)

to 2004 levels (the last year in the dataset) by estimating

and applying linear trends to eastern and western U.S.

agricultural output over the 1960–2004 ERS dataset

period.19 In the case of recreation, we scale recreational

activity at each reservoir using county-level population

projections from 2015 to 2100 and, operating along the

assumption that population is evenly distributed over

the county, spatially average from the counties to

the drainage basin of each reservoir.20 To estimate

the benefits of mitigation, we then evaluate the dif-

ference between the two emissions stabilization sce-

narios and the reference scenario for each set of

model runs.

3. Results

In this section, we present a summary of the

economic effects of global GHG mitigation in the ag-

ricultural sector and for five of the recreational reser-

voirs. Economic effects are presented in average real

annual terms for the 2050 and 2100 eras (i.e., 2036–65

and 2086–2115), and in present-value terms for the

2015–2100 period.21 In terms of effect on the crop-based

agricultural sector, GHG mitigation has a strong posi-

tive effect in the western United States and a mild

negative effect in the eastern United States, for an

overall positive U.S.-wide effect. On the other hand,

results of the recreation analysis depend largely on the

assumed GCM pattern (IGSM-CAM, MIROC, or

CCSM) andmitigation scenario (POL3.7 or POL4.5), as

well as the location of each reservoir, because of the

widely variable effects of GHG mitigation on SPI

drought occurrence (Figs. 2 and 4).

TABLE 7. Results from the second-stage recreation regression. An em-dash indicates that reservoir elevations in the observed record did

not decline to or beyond these impact levels. The dependent variable is reservoir visitation (over the 2000–10 period).

Variable

Coefficient

Belton

Lake (TX)

Benbrook

Lake (TX)

BlueMarsh

Lake (PA)

Carters

Lake (GA)

Cherry Creek

Lake (CO)

Lake

Cumberland

(KY)

LakeHartwell

(GA and SC)

NewHogan

Lake (CA)

Initial impact level 0.20a 20.07 20.27a 20.21 0.07 20.26b 20.02 20.24b

Recreation impact level 20.009 20.26b 20.51b 20.35b — 20.40b 20.19b 20.30

Water access limited — 20.24 — 20.53b — — 20.27b —

ln(population) 23.17b 21.05 8.65b 20.28 0.94 1.19 1.21 20.11

ln(precipitation) 20.009 0.027 0.10c 20.07 0.07c 0.05a 20.001 20.02

ln(temperature) 20.04 0.01 0.38b 0.01 0.01 1.12b 0.59b 1.36b

ln(weekenddays) 0.15 0.18 20.11 0.37 20.12 0.20 20.11 20.13

Constant 54.22b 26.07 2110.10b 14.04 20.48 23.69 22.83 7.93

R2 0.27 0.23 0.66 0.17 0.16 0.79 0.68 0.73

No. of observations 39 41 75 49 53 44 111 79

Months included in

regression

May–Sep May–Sep Jan–Dec May–Sep May–Sep May–Sep Jan–Dec Jan–Dec

a Significant at the p , 0.05 level.
b Significant at the p , 0.01 level.
c Significant at the p , 0.1 level.

19 As this analysis identifies changes in average output, this

procedure essentially updates the average agricultural output in

the dataset from 1982 to 2004 so that we are measuring impacts to

2004 output rather than 1982 output.
20 Using theU.S. population projections described in Paltsev et al.

(2015), the Integrated Climate and Land Use Scenarios (ICLUS;

Bierwagen et al. 2010) model was applied to generate county-level

population projections at 5-yr time steps between 2000 and 2100.

21 Present values are constructed by building a piecewise linear

time series of average annual effects in 2005 dollars, discounting

that series at 3% (2005$), and then summing the result. The

piecewise linear series assumes zero effect starting in 2015 and then

linearly interpolates to the average annual effects in 2025, 2050,

2075, and 2100.
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a. Agriculture results

GHGmitigation benefits agriculture in western states,

and the United States overall, in 2050 and 2100 under all

GCM patterns and both the POL3.7 and POL4.5 sce-

narios. However, the effect of mitigation on agriculture

in the eastern states is varied (Table 9).22 The stronger

GHG mitigation policy (POL3.7) offers additional

benefits compared to the POL4.5 (Tables 9 and 10;

Fig. 3). Average annual GHGmitigation benefits for the

contiguous United States, in real 2005 dollars, are $390

million (POL4.5) and $980 million (POL3.7) in 2050,

and they rise to over $2.1 billion (POL4.5) and $2.2

billion (POL3.7) by 2100. In present-value terms, miti-

gation benefits for the contiguous United States are $4.3

billion (POL4.5) and $7.8 billion (POL3.7) under the

IGSM-CAM pattern between 2015 and 2100, which are

0.18% and 0.10% of total present value of projected

reference agricultural outputs. These seemingly modest

benefits are the result of combining smaller near-term

2025 effects with larger, yet more discounted, 2100

effects.

GHG mitigation also benefits the agricultural sector

under both the MIROC pattern and the CCSM pattern

(Table 10). In present-value terms over the 2015 to 2100

period, total benefits in present-value terms over the

2015–2100 period range from $1.3 to $28.6 billion across

these four pattern/emissions combinations (e.g.,MIROC/

POL3.7), with the latter figure (fromMIROC/POL 3.7 in

Table 10) representing 0.67% of total U.S. agricultural

output. Again, keep inmind that these positive U.S.-wide

effects represent the net outcome of positive effects in

western states offset partially by negative effects in

eastern states.

b. Reservoir recreation results

The effect of GHG mitigation on reservoir recrea-

tion benefits vary depending on which GCM pattern

and mitigation scenario are assumed, as well as the

responsiveness of reservoir visitation to drought events

within a drainage basin and whether mitigation has a

positive or negative effect on drought occurrence and

severity. We present results for the five recreational

reservoirs with sufficient variation in their explanatory

variables to formulate statistical relationships between

drought occurrence and visitation (for reasons dis-

cussed above, Belton, Blue Marsh, and Cherry were

dropped from this portion of the analysis). Overall, for

the very limited sample of reservoirs evaluated, the

effect of mitigation on reservoir recreation is negative

for the IGSM-CAM and CCSM patterns and positive

for the MIROC pattern (Tables 11 and 12). For il-

lustration of how drought effects translate to eco-

nomic effects at Cumberland Lake, drought lowers

average lake levels, and visitation responds negatively

when impact levels are reached. GHG mitigation is

expected to increase the number of droughts there

(POL4.5) or have little effect on the number of

droughts (POL3.7); therefore, mitigation is expected

to reduce visitation to this lake.

Under the IGSM-CAM climate projections, only one

(New Hogan, in California) of these five reservoirs ex-

periences increased recreational benefits frommitigation

and four experience decreases (Table 11). Cumberland,

Hartwell, and Carters are located in the southeastern

United States (Fig. 1) where mitigation is projected to

increase SPI droughts under the IGSM-CAM pattern.

Benbrook Lake, in Texas, is also projected to experience

increased SPI droughts, even though GHG mitigation

under the IGSM-CAM projections generally decreases

the occurrence of droughts within Texas. Under the

IGSM-CAM pattern, the present value of benefits of

GHGmitigation (from 2015 until 2100) range from2$5.9

million at Hartwell in South Carolina to $0.33 million at

New Hogan in California.

Again, under the MIROC and CCSM patterns,

results are varied. Under the MIROC pattern (i.e.,

hotter/drier), GHG mitigation generates either posi-

tive or zero recreational benefits through 2100 for four

TABLE 8. Emission mitigation scenarios.

Scenario name Forcing stabilization level

Atmospheric concentration in 2100

(CO2 equivalent, IPCC gases)

POL3.7 (strongest mitigation) 3.7Wm22 500 ppm

POL4.5 (weakest mitigation) 4.5Wm22 600 ppm

REF (no mitigation) Business-as-usual reference case (10Wm22) 1750 ppm

22Although we would expect that the relationship between de-

gree of mitigation (i.e., increasing from POL4.5 to POL3.7) and

changes in extreme precipitation in a given time period to be

monotonic at the global or very large regional (e.g., continents)

scale, shifts in spatial patterns of precipitation under the different

mitigation scenarios mean that we may not observe this mono-

tonicity over a narrower spatial extent, such as the eastern United

States or state-level results presented in Figs. 2–5. For example, in

the eastern states (2050 era in Table 9), we see damage from mit-

igation under POL4.5 but a benefit under POL3.7.
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of the five reservoirs. Under the CCSM pattern (i.e.,

less-hot/wetter), GHG mitigation generates damages

for three of the five reservoirs (Table 12). The in-

consistent sign and magnitude of recreation benefits

across GCM patterns and mitigation levels highlights

the importance of structural uncertainties across GCMs.

For example, at Benbrook, the positive present-value

(PV) results under MIROC/POL4.5 (11.04%) oppose

the negative PV results under IGSM-CAM/POL4.5

(20.85%). Overall, the 2015–2100 present-value bene-

fits range from 2$3.7 million at Hartwell in South

Carolina (CCSM/POL3.7) to $6.6 million at Benbrook

in Texas (MIROC/POL3.7). Benbrook could instead

experience zero or negative benefits if future climate

FIG. 2. Projected change in number of severe plus extreme 12-month SPI droughts in a 40-yr period due to GHG

mitigation (i.e., policy minus reference), 2050 and 2100, under the IGSM-CAM pattern.

FIG. 3. Projected change in number of severe and extreme seasonal PDSI droughts in a 40-yr period due to GHG

mitigation (i.e., policy minus reference), 2050 and 2100, under the IGSM-CAM pattern.
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change resembles the IGSM-CAM pattern instead of

MIROC or CCSM.

4. Discussion and further research

The modeled regional effects of drought on crop-

based agriculture sectors are generally negative and al-

most always statistically significant. This finding aligns

with prior research showing that drought has been an

important driver of historical reductions in economic

activity in these sectors (Howitt et al. 2014; NCDC 2013;

Boehlert and Jaeger 2010; NWS 2002). The spatial pat-

tern of drought projections shows increases in occur-

rence in the western United States and decreases in the

east under the IGSM-CAM pattern, matching results in

prior research (e.g., Strzepek et al. 2010). Finally, at a

national scale, we find that GHG mitigation reduces

both drought incidence and damages for the agricultural

sector, despite regional differences in the sign and

magnitude of effects under certain model scenarios.

Between 2015 and 2100, the present value of benefits of

GHG mitigation in the agricultural sector reaches $7.8

billion (IGSM-CAM/POL 3.7) in 2005 dollars (at a 3%

discount rate). This outcome comprises $7.9 billion in

positive benefits to western states and $0.25 billion in

damages to eastern states.

More frequent and severe droughts reduce reservoir

visitation. Consequently, GHG mitigation tends to

benefit regions in which higher GHG emissions would

otherwise cause more frequent drought occurrence and

increased severity. However, given the prevalence of

negative benefits within our reservoir recreation results,

this intuitive conclusion should be tested on a larger set

of reservoirs. It was infeasible to evaluate the economic

effects of droughts on each recreational reservoir in the

United States. Further refinement of the statistical an-

alyses and addition of more reservoirs would allow a

more robust and U.S.-wide analysis.

FIG. 4. Projected change in number of severe and extreme 12-month SPI droughts in a 40-yr period due to GHG mitigation (i.e., policy

minus reference), 2050 and 2100, under the MIROC and CCSM pattern-scaled runs.

FIG. 5. Projected change in number of severe and extreme seasonal PDSI droughts in a 40-yr period due to GHG mitigation (i.e., policy

minus reference), 2050 and 2100, under the MIROC and CCSM pattern-scaled runs.
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Because the IGSM-CAM pattern projects more wide-

spread increases in precipitation in theUnited States than

many other GCMs, we also simulated a drier future cli-

mate scenario using theMIROCpattern.Wefind that the

present value of GHG mitigation benefits to agriculture

may be as large as $28.6 billion (MIROC/POL 3.7). These

benefits are highest in the southwestern United States,

where, in the absence of GHG mitigation, drought fre-

quency is projected to increase most dramatically.

This analysis presents a method for analyzing the

economic effects of changes in drought frequency and

severity due to GHG mitigation. We apply the methods

to just two sectors of the U.S. economy using three dif-

ferent GCM patterns (IGSM-CAM, MIROC, and

CCSM) and two different GHG mitigation levels

(POL3.7 and POL4.5). There are several notable limi-

tations of the work. First, the analysis focuses only on

the effects of GHG mitigation on drought; mitigation

will also affect the risk of flooding and other relevant

weather events, such as hail, wind storms, frost events,

and growing degree days. In regions such as the north-

eastern United States, where GCMs project increases in

precipitation, the flood-reduction benefits of GHG

TABLE 9. Effect on total value of crop output of changes in

drought frequency and severity due to GHG mitigation: 2050 and

2100 annual values and 2015–2100 present-value IGSM-CAM re-

sults. Annual values and present values for the REF scenario are

shown in billions of real 2005 U.S. dollars (2005$ BIL). Positive

percentages indicate mitigation benefits; negative percentages in-

dicate mitigation damages. Present values are generated by dis-

counting at 3% to 2015 (2005$ BIL); the time series used to

estimate present values is generated by linearly interpolating be-

tween 2015 (zero) and the mitigation results from the 2025, 2050,

2075, and 2100 eras. Because results from 2025 and 2075 are in-

cluded in this calculation, the magnitude and possibly sign of this

result can differ from the 2050 and 2100 values.

Scenario

Eastern

states

Western

states U.S.-wide

2050 annual REF $93 $70 $163

POL3.7 0.02% 1.38% 0.60%

POL4.5 20.18% 0.80% 0.24%

2100 annual REF $93 $69 $162

POL3.7 20.15% 3.40% 1.37%

POL4.5 20.05% 3.15% 1.32%

PV (2015–

2100)

REF $2462 $1882 $4344

POL3.7 20.01% 0.42% 0.18%

POL4.5 20.17% 0.45% 0.10%

TABLE 10. Effect on crop output of changes in drought frequency

and severity due to GHG mitigation: 2050 and 2100 annual values

and 2015–2100 present-value MIROC and CCSM pattern-scaled

results. Annual values and present values for REF scenario are

shown in billions of real 2005 U.S. dollars (2005$ BIL). Positive

percentages indicate mitigation benefit; negative percentages in-

dicate mitigation damages. Present values are generated by dis-

counting at 3% to 2015 (2005$ BIL); the time series used to

estimate present values is generated by linearly interpolating be-

tween 2015 (zero) and the mitigation results from the 2025, 2050,

2075, and 2100 eras. Because results from 2025 and 2075 are in-

cluded in this calculation, the magnitude and possibly sign of this

result can differ from the 2050 and 2100 values.

Scenario

NCAR CCSM

(less-hot/wetter

model)

MIROC (medres)

(hotter/drier

model)

2050 annual REF $164 $161

POL3.7 0.06% 0.74%

POL4.5 0.05% 0.54%

2100 annual REF $164 $159

POL3.7 0.19% 1.65%

POL4.5 0.15% 1.39%

PV (2015–2100) REF $4349 $4288

POL3.7 0.05% 0.67%

POL4.5 0.03% 0.53%

TABLE 11. Effect on recreational benefits of changes in drought frequency and severity due to GHGmitigation: 2050 and 2100 annual

values and 2015–2100 present-value IGSM-CAMresults. Annual values and present values forREF scenarios are shown inmillions of real

2005U.S. dollars (2005$MIL). Positive values indicate mitigation benefit; negative values indicate mitigation damages. Note that because

of data and statistical modeling limitations, Belton, BlueMarsh, and Cherry were dropped from this portion of the analysis. Present values

are generated by discounting at 3% to 2015 (2005$ MIL); the time series used to estimate present values is generated by linearly in-

terpolating between 2015 (zero) and the mitigation results from the 2025, 2050, 2075, and 2100 eras. Because results from 2025 and 2075

are included in this calculation, the magnitude and possibly sign of this result can differ from the 2050 and 2100 values.

Scenario Benbrook (TX) Carters (CO)

Cumberland

(KY)

Hartwell

(GA and SC)

New Hogan

(CA)

2050 annual REF $23.6 $18.9 $16.4 $145.7 $3.6

POL3.7 0% 0% 20.85% 0% 0.67%

POL4.5 20.14% 0% 21.79% 20.02% 0.05%

2100 annual REF $32.6 $33.4 $6.2 $137.5 $1.9

POL3.7 0% 20.75% 21.10% 21.07% 7.89%

POL4.5 0% 20.75% 20.42% 21.07% 7.76%

PV (2015–2100) REF $582 $468.1 $477 $3,701 $93.3

POL3.7 20.05% 20.19% 20.76% 20.15% 20.18%

POL4.5 20.85% 20.19% 20.89% 20.16% 0.35%
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mitigation may more than offset the damages due to

higher drought incidence. Second, by using historical

data to inform the regressions, the analysis assumes that

agricultural producers and reservoir managers will

continue to use the same management tools and prac-

tices under future climate change as they have histori-

cally. In reality, future climate conditions might require

producers to drastically change crop mixes (e.g., note

the dramatic fallowing taking place in California right

now), adopt irrigation on previous dryland acreage,

change irrigation technologies or practices, tap into new

water sources, such as deep aquifers, or switch to dry-

land cropping because aquifers have gone dry. Gov-

ernment policies and incentives could also change

dramatically in the future, disrupting the relative value

of agricultural output in different states.

We recommend two areas for future research. First,

the benefits of GHG mitigation can be estimated for a

wider variety of economic activities that are also af-

fected by drought, including hydropower, municipal and

industrial use, water-based navigation, ecosystem ser-

vices, other water-dependent recreational activities, and

various economic activities that depend on surface water

quality, which declines during low flows. Second, we

recommend developing drought indices based on runoff

and reservoir yield, which may be more relevant for

understanding and projecting the economic impacts of

drought and GHG mitigation on hydropower, reservoir

recreation, and commercial navigation.
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