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1. Introduction 

 The monocentric city model of Muth (1969) and Mills (1972) is still the dominant 

model of urban spatial structure.  Its central predictions – that population density, land 

values, and house prices fall with distance from the city center – have been the subject of 

repeated empirical testing.  Indeed, one objective of the model was to explain a set of 

stylized empirical facts, and extensions of the model were developed in response to 

empirical testing.  This close cooperation between theory and empirical work is one of 

the hallmarks of the field of urban economics 

 A consensus appears to have developed that the monocentric city model is no 

longer an accurate depiction of urban spatial structure.  This view is partly due to the 

unrealistic nature of the model’s assumptions.  Clearly not everyone works in the central 

city, and modern urban areas may be viewed more aptly as polycentric rather than 

monocentric.  The central behavioral assumption of the model, that workers attempt to 

minimize their commuting cost, is called into question by the literature on “wasteful 

commuting” (Hamilton, 1982).  O’Sullivan’s (2002) popular textbook perpetuates the 

notion that the monocentric city model is designed to explain an old-fashioned city by 

listing as one of the assumptions “horse-drawn wagons,” implying that the model does 

not apply to a modern city with cars. 

 In this chapter, I review some of the empirical evidence on the monocentric city 

model’s predictions.  I contend that the demise of the model is exaggerated.  The central 

city still dominates urban spatial patterns, and the basic insights of the model apply to 

more complex polycentric cities.  Much of the apparent decline in the explanatory power 

of the monocentric city model is actually a misunderstanding of the empirical evidence.  
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And importantly, many of the ways in which the model now fails are in fact explained by 

the comparative-statics predictions of the model itself.  Although the model is over-

simplified, it remains a useful analytical tool requiring only modest modifications to be 

remarkably accurate. 

 

2. Empirical Predictions  

2.1 Consumers 

 In the Muth-Mills version of the monocentric city model, consumers receive 

utility from housing and other goods.  Housing is an abstract commodity in this model.  It 

combines land, square footage, and all other housing characteristics into a single 

measure.  The durability of housing is ignored because the static nature of the model is 

designed to focus on long-run equilibrium results.  Each household has a worker who 

commutes each day to the central business district (CBD).  The simplest version of the 

model includes neither congestion nor time costs of commuting.  Instead, each round trip 

to the CBD costs $t per mile.  Since consumers have no direct preferences for one 

location over another, they would all try to live in the CBD in order to minimize their 

commuting costs unless house prices adjust to keep them indifferent between locations.  

In equilibrium, the price of housing must fall with distance from the CBD: 

( )
( )dH
t

d
dPh −

=
∂

∂
     (1) 

where Ph(d) is the price (or rent since the distinction is irrelevant in a static world) and 

H(d) is the quantity of housing at a site d miles from the CBD.   

Equation (1) is simply a formula for the slope of a function depicting the 

relationship between the price of housing and distance from the CBD.  If the quantity of 
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housing does not vary by location, equation (1) predicts that the price of housing is a 

linear function of distance.  However, the model predicts that H(d) is lower near the CBD 

than in more distant locations because consumers substitute away from housing and 

toward other goods when Ph is high.  This substitution implies a particular shape for the 

house price function:  the slope is steep when H is low, meaning that prices rise rapidly 

when approaching the CBD.   

The first major implication of the monocentric model, then, is that, for a group of 

identical households, house prices decline with distance from the CBD according to a 

smooth, convex function.  Figure 1 shows the general form of the function.  In a world 

with different types of households, the general form of the relationship will continue to 

look much like the function shown in Figure 1 because the equilibrium house price 

function is the upper envelope of the functions for each household type.  Since the 

quantity of housing is low where the price of housing is high, the function for the 

quantity of housing is upward sloping.  Finally, since consumers substitute toward other 

goods as they consume less housing, the model predicts that Figure 1 also represents 

consumption of the non-housing good.   

Insert Figure 1 Here 

One critical point to bear in mind is that the monocentric city model makes no 

direct predictions for the value of housing.  The value of housing is the product of price 

times quantity, Vh(d) = Ph(d)H(d).  Since price falls with distance and quantity rises, the 

value of housing can go either way.  Once we allow for differences in income among 

consumers, the model predicts that the value of housing is high where higher-income 

households choose to live.  Again, this relationship between house values and distance 
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from the CBD is ambiguous.  Whether house values rise or fall with distance from the 

CBD has no direct empirical relevance for the monocentric city model.  The trick is to 

isolate the price of a unit of housing from the quantity – a nearly hopeless task since 

housing is a complex, multi-dimensional good that cannot be measured simply.  

 

2.2 Producers 

 Housing producers combine land and capital to produce housing.  Producers will 

pay more for land near the CBD because consumers will pay more for housing there.  

Figure 1 thus can depict the equilibrium relationship between land values and distance 

from the CBD:  land values decline at a decreasing rate with distance.  Just as consumers 

substitute away from housing and toward other goods near the CBD, producers substitute 

away from land and toward capital where the price of land is high.  This result implies 

that the ratio of capital to land declines with distance from the CBD.  Thus, Figure 1 also 

represents the capital-land ratio.  Indirectly, we also have a prediction that population 

density declines with distance because density must be high where the ratio of capital to 

land is high. 

 Lot sizes are easy to measure.  But like housing itself, housing capital is a 

theoretical concept and is not easily measured.  Producers substitute capital for land in 

various ways:  building taller buildings, using more floor space, or simply by improving 

the quality of the non-land inputs. Empirically, building heights and floor areas are easy 

to observe.  The most readily available measure of the capital-land ratio is the “floor-area 

ratio”, which is simply building area divided by lot size.  The model predicts that floor-

area ratios fall with distance from the CBD as shown in Figure 1. 
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  2.3 A Summary of Empirical Predictions for Distance from the CBD 

 The simple version of the monocentric city model produces an impressive number 

of predictions.  The most important of these predictions are that the price of a unit of 

housing, land values, the capital-land ratio, and population density all decline smoothly 

with distance from the CBD, as shown in Figure 1.  The only major alterations to the 

standard two-good consumer maximization problem are the assumptions that no two 

households can occupy the same space and workers must commute to their jobs.  A full 

urban spatial structure follows from these assumptions. 

 The model has empirical content.  Unlike many economic models, we have full 

functional form predictions.  Figure 1 implies that distance from the CBD is the primary 

determinant of urban spatial relationships.  For example, we should find that land values 

decline smoothly at a decreasing rate with distance from the CBD, the function should 

have no discontinuities, and this basic relationship should hold for different cities at 

different times.   

 

2.4 Comparative-Statics Results 

  Although the simple functional form predictions are a powerful test of the model, 

many different models could produce the same functions.  Another commonly used 

empirical approach is to test the monocentric city model’s comparative-statics 

predictions.  The predictions discussed here are based on the “closed-city” version of the 

model, in which the overall population of the city is an exogenous variable while the 

utility level of the representative household is endogenous.  The model predicts that the 

function in Figure 1 shifts up as population or agricultural land values increase because 
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either change increases the cost of land throughout an urban area.  The increase in land 

values and house prices leads producers to build homes using higher capital-land ratios, 

which lead to higher population densities.  Decreases in commuting costs make sites 

farther from the CBD relatively more valuable than closer sites.  Thus, a decrease in 

commuting costs leads to a flatter slope for the functions depicted in Figure 1.   

 The results are ambiguous for the remaining important variable, income.  An 

increase in income increases the demand for housing, which leads consumers to prefer 

sites farther from the CBD where the price of housing is lower.  But it also increases the 

aversion to time spent commuting, which has an offsetting effect making sites closer to 

the CBD more valuable.  Empirically, it appears that the former effect dominates as 

increases in income have generally led to declines in the slopes of the functions in Figure 

1.  However, the empirical tradeoff between the housing demand and commuting time 

cost elasticities has been the subject of very little empirical investigation.   

 Since the 1800s, most urban areas have enjoyed steadily rising incomes, lower 

commuting costs, and steady population growth.  The path of agricultural land values is 

less clear; although they may well have declined in real terms, their effect is 

overwhelmed by the large increase in urban populations.  Together, these changes should 

lead the functions depicted in Figure 1 to shift up and have flatter slopes.  Thus, one way 

to test the comparative-statics predictions is to compare estimates for a single city over 

time.  Alternatively, we might compare estimates across cities at a given time if measures 

are available for income, commuting cost, population, and agricultural land values. 

 The latter approach – comparing estimates across cities – is far less common 

because it is more difficult to acquire data for a cross section of cities than for a single 
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city over time.  Excellent examples of the approach include Mills (1972) and Brueckner 

and Fansler (1983).  Mills compares population density estimates for Baltimore, 

Milwaukee, Philadelphia, and Rochester for 1880-1963.  He finds some evidence that 

intercepts are higher and slopes are flatter when cities have higher populations and 

incomes and lower commuting costs.  However, by far the most important explanatory 

variable is the lagged dependent variable, indicating that inertia is a critical determinant 

of the density function coefficients.  Brueckner and Fansler compare total land areas 

across 40 American cities in 1970.  As predicted by the model, they find that land areas 

are lower when population and incomes are lower and when agricultural land values are 

higher.  Evidence on the effect of commuting costs on land area is less clear:  their 

attempts to measure this variable produce the right signs but the coefficients are 

statistically insignificant.  In general, this approach is hampered by the difficulty inherent 

in measuring variables such as income and commuting costs. 
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3. Empirical Modeling Approaches 

3.1 Regression-Based Approaches 

 The functions shown in Figure 1 are estimated easily by ordinary least squares 

regression procedures.  The most commonly used functional form is the simple negative 

exponential function: 

iii uxy +−= βαln      (2) 

where xi is distance from the CBD at location i, ui is an error term, and α and β are 

parameters.  The dependent variable, yi, may be the price of a unit of housing, land value, 

the capital-land ratio, or population density.  The negative exponential function generally 

fits urban spatial relationships well.  In this formulation, β is the “gradient” because each 

additional mile from the CBD causes y to fall by 100×β percent.  Additional terms can 

easily be added to the estimating equation.  Equation (2) imposes the structure implied by 

the monocentric city model:  0<−=∂∂ iii yxy β , and 0222 >=∂∂ iii yxy β . 

Although equation (2) is the most commonly used estimating equation, it may not 

be flexible enough for many urban spatial relationships.  The land value gradient, for 

example, tends to be higher near the city center than in more distant locations.  Adding 

higher-order terms – x2 or x2 and x3 – may improve the fit significantly.  One particularly 

attractive formulation is the cubic spline.  In this approach, the distance variable, x, is 

split into equal intervals and a separate cubic function is applied to each region.  The 

function is constrained to be smooth at the boundaries between regions (which are known 

as “knots”).  For example, in the empirical section of this chapter, I divide distance from 

the CBD into four intervals.  The minimum value is x0, the boundaries between regions 
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are x1, x2, and x3, and the maximum value is x4.  The distance between each knot is (x4-

x0)/4.  The estimating equation is 

( ) ( ) ( )303
2

0201ln xxxxxxy iiii −+−+−+= βββα  + 
          (3) 

( ) ( ) ( ) iiii uDxxDxxDxx +×−+×−+×− 3
3

332
3

221
3

11 γγγ  

The Dk terms are dummy variables that equal one when xi ≥ xk.  Additional flexibility can 

be added by defining more regions.  Each additional region simply involves a new 

definition of the knots and an additional interaction term between a dummy variable and 

a cubic term of the form (xi – xk)3. 

 A good example of the use of spline functions is Anderson (1982).  Alternative 

flexible estimators such as Fourier expansions (Gallant, 1982) are also useful.  

Nonparametric and semiparametric estimators such as that used by McMillen (1996) are 

popular alternatives.  However, nonparametric estimators are far more difficult to use and 

have few advantages when nonlinearity is confined to a single variable.  Interactions 

between variables may be easier to model using nonparametric techniques, though.  

 

3.2 The Two-Point Method for Population Density Functions  

 The most widely studied urban spatial relationship is population density.  The 

only necessary data to estimate a population density function are population, land areas, 

and distance from the CBD for small geographic areas.  Such data now are readily 

available for zip codes, census tracts, and even smaller areas.  However, historical data 

are more apt to be reported only for larger geographic areas, such as municipalities and 

counties, making it difficult to compare density gradients over a long time. 
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 Mills (1972) proposed a clever method for estimating historical population 

density gradients using extremely limited data sources.  The starting point for his 

procedure is the simple negative exponential function, equation (2), where y is defined as 

population density.  Population density at location d can be written as P(d)/A(d), where 

P(d) is the number of residents and A(d) is the land area in an infinitesimal ring d miles 

from the city center.  In a circular city, A(d) = 2πd.  Mills generalizes this specification 

somewhat by assuming that ( ) ddA φ= .  For example, φ  is approximately equal to π in 

Chicago or Milwaukee and to the full 2π in Indianapolis.  The approach does not work in 

cities such as San Francisco.   

 Mills’ trick is to integrate the population density function so that only observable 

variables remain.  Given the expression for A(d), we can re-write equation (2) as P(d) = 

dde βαφ − .  Integrating this function by parts from d=0 to d=dc, we have Pc 

= ( ) ( )[ ]cd
c ede βα ββφ −+− 112 .  If dc represents the central-city radius, then Pc is the 

population of the central city.  Letting dc go to infinity, the population of the entire 

metropolitan area is approximately P = 2βφ αe .  The assumption that the metropolitan 

extends forever simplifies the calculations and causes little bias.  Finally, the ratio Pc/P 

leads to a tractable equation: 

( )[ ]cd
c

c ed
P
P ββ −+−= 11     (4) 

Given the central city population, the population of the entire metropolitan area, and the 

radius of the central city, equation (4) has only one remaining unknown, β.  Thus, this 

equation can be solved iteratively by choosing a value of β that provides the closest 

match between the two sides of equation (4). 
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 Population data are readily available from the Census Bureau.  However, dc can 

be difficult to calculate.  Although φ  does not enter equation (4) directly, it may be easier 

to estimate than dc.   The two parameters are related by the identity ( ) 22 cc dA φ= , where 

Ac is the land area of the central city.  Since data on central city land areas are available 

from the Census and φ  is usually easy to approximate, the calculations can be simplified 

by calculating an implicit value for the central-city radius:  φcc Ad 2= .  Thus, Mills’ 

procedure makes it possible to estimate theoretically appropriate population density 

gradients with readily available historical data – population of the central city and 

metropolitan area.  Mills (1972) and Macauley (1985) are good examples of the 

technique. 

 

4. Empirical Results – Land Values and Population Density 

 Figure 2 shows the trends in population density and land value gradients since 

Chicago’s founding in the 1830s.  McDonald (1997) calculated the density gradients for 

1870-1990 using Mills’ two-point method, and I used data from 2000 to update the 

estimates.  The land value gradients come from McMillen (1996).  For 1836-1928, the 

estimates are based on data from Hoyt (1933).  Hoyt presents maps of average land 

values for tracts of land with the City of Chicago that typically are about a square mile in 

area.  Mills (1969) was the first to use this classic data source to estimate land value 

functions.  I updated the estimates for 1960-1990 using data from Olcott’s Land Values 

Blue Book of Chicago.  Until recently, Olcott’s presented land value estimates annually 

for every block in the city.   

Insert Figure 2 Here 
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 The important trend to note in Figure 2 is the long-running decline in both land 

value and population density gradients.  Land values decline by more than 60% per mile 

with distance from the CBD in 1836 and 1857.  Over the rest of the nineteenth century, 

the gradient declines to about 50%, and it falls to about 20% in 1928.  By 1960, the land 

value gradient hovers near zero, but the gradient rises back to 14% in 1990.  The 

population density gradient falls from over 60% in 1870 and 1880 to 20-30% for 1920-

1950 to between 10% and 20% thereafter.   

 During this long time period, commuting costs fell dramatically, incomes 

increased, and Chicago grew from a small village of a few thousand people to a city with 

about 3 million residents and a metropolitan area with a population of about 8 million.  

The monocentric city model predicts that both the land value and population density 

functions should shift up and the gradients should decline over time.  The data strongly 

support both predictions.  Although the two-point method does not produce standard 

error estimates, the land-value regressions fit the Hoyt data well.  The R2s indicate that 

the single explanatory variable, distance from the CBD, explains more than 80% of the 

variation in the natural logarithm of land values in 1836 and 1857, and the R2 remains as 

high as 0.61 in 1910.  However, the R2 falls to 0.24 in 1928, and is nearly zero in 1960.  

The R2 is 0.10 in 1990.  Thus, the evidence is mixed:  the model appears to fit well in the 

1800s, and the decline in the gradients matches theoretical predictions.  But low R2s 

indicate that the model may have little predictive power now. 

 The more recent evidence against the model’s predictive ability is not as strong as 

appears at first glance.  In a model with a single explanatory variable, the formula for the 

R2 is 222
ux ssb  where b is the estimated gradient and 2

xs  and 2
us  are the variances of the 
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explanatory variable and the regression residuals.  If the locations for the observations do 

not change over time and the residual variance stays the same, the R2 will decline 

whenever the gradient declines.  Theory has nothing to say about trends in the model 

error variance.  Thus, the model predicts that R2s should fall over time as commuting 

costs decline and income increases.   

 Another commonly overlooked feature of land-value and population density 

gradients is the way data sets have changed over time.  Data collection has improved 

greatly in recent years.  In the past, data were much more likely to be reported as simple 

averages for large areas.  For example, Hoyt’s square-mile tracts are unusually small for 

historical land-value data.  Olcott’s presents much more detailed data:  the numbers 

sometimes vary within a single city block.  For population density, Clark’s (1951) classic 

study uses data for square mile rings around the CBD.  A city with a 10-mile radius will 

only have 10 observations.  Modern data sets are much larger.  For example, McMillen 

and Lester (2003) estimate population density gradients using more than 10,000 

observations in the Chicago metropolitan area.  R2s are usually much higher for 

aggregated data.   

Further, in the past researchers usually confined their attention to the central city.  

Suburban functions are often nearly flat; the R2 formula implies that the estimated 

function’s predictive power will be low for these observations.  Thus, adding suburban 

data usually drives down the R2.  Finally, the monocentric city model only predicts that 

the functions should look like those in Figure 1; it does not predict that the negative 

exponential function is the correct one.  In McMillen (1996), I find that a more general 

functional form and the addition of a few explanatory variables – distance from Lake 



 14

Michigan and distance from O’Hare and Midway Airports – raises the R2 for the 1990 

Olcott’s land value function from 0.10 to 0.87.  Whereas a theory than only accounts for 

10% of the variation in land values is unimpressive, 87% is impressive indeed.  No one 

ever claimed that distance from the CBD was the only variable that matters.  If flexible 

functional forms and a few variables account for nearly 90% of the spatial variation in 

land values across small geographic areas, then the theory is alive and well. 

Other evidence does point to important deficiencies of the monocentric city 

model.  The primary problem is the static nature of the model.  In fact, age matters.  

McDonald and Bowman (1979) find that land values increase with distance from the 

CBD in older areas of Chicago, and McDonald (1979) finds little relationship between 

land values and population density in these areas.  Densities reflect the past whereas land 

values reflect expectations about the future.  Brueckner (1986) finds evidence in favor of 

a vintage model of urban spatial structure:  population densities increase discretely across 

distances where building ages are different.  To be realistic, the simple model must be 

altered to take into account the fact that buildings last a long time and are not destroyed 

whenever economic conditions change.  Other changes such as suburban subcenters and 

the effect of rivers and lakes on urban spatial form are more marginal and can be handled 

by introducing a few additional explanatory variables.  Vintage effects are a more 

fundamental challenge to the monocentric model requiring significant changes to the 

theory (e.g, Anas, 1978; Wheaton, 1982). 
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5. Empirical Results – Floor-Area Ratio 

Although floor-area ratios have not been analyzed as extensively as population 

densities or land values, they are a critical part of the monocentric city model.  The model 

predicts that low commuting costs for sites near the city center lead to high land values, 

which in turn lead to high floor-area ratios.  In this section, I present estimates of the 

relationship between floor-area ratios and distance from the CBD in Cook County 

Illinois, which includes Chicago.  The data set includes single-family residential homes 

selling between 1983 and 1999.  Data on lot size, floor area, and addresses come from the 

Cook County Assessor’s Office, and the list of sales comes from the Illinois Department 

of Revenue.   

The first two columns of results in Table 1 present the results of regressions using 

the natural logarithm of the floor-area ratio as the dependent variable and distance from 

the CBD as the explanatory variable.  Only data from the City of Chicago are used for 

these regressions.  The first column shows that floor-area ratios decline by 5.5% with 

each additional mile from the Chicago CBD.  The R2 indicates that only about 15% of the 

variation in this variable is explained by distance.  The second column of results is based 

on a smooth cubic spline with four regions.  The R2 rises to 0.207, and the coefficients for 

the additional explanatory variables are all statistically significant.  Figure 3 shows the 

estimated functions.  The spline function’s additional explanatory power comes from the 

sharp rise in estimated floor-area ratios near the CBD.  Both functions are consistent with 

the predictions of the monocentric city model. 

Insert Table 1 Here 

Insert Figure 3 Here 
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The last two columns of results present comparable estimates for all of Cook 

County.  The data for these regressions are averages by census tract.  The point of these 

regressions is to show how dramatically the explanatory power increases when aggregate 

data are used rather than data for individual homes.  The R2 for the simple negative 

exponential function rises to 0.556 even though the estimated gradient does not change at 

all.  The R2 for the spline rises to 0.692, indicating that an impressive 69.2% of the 

variation in the logarithm of the floor area ratio is explained by a single variable, distance 

from the Chicago CBD.  A graph of the estimated function (not shown here) reveals that 

distance from the CBD no longer has much explanatory power beyond about 18 miles.  In 

fact, the R2 is only 0.021 for a spline function with four equally-spaced intervals from 15 

miles from the CBD to the maximum value of 34 miles.  The model works well in the 

area of metropolitan area that is still dominated by the CBD; it does not work well in 

newer suburban areas 

 

6. House “Prices” 

 Other than population density, the most common test of the monocentric city 

model is the relationship between house “prices” and distance from the CBD.  The word 

“price” is in quotes because the unit price of housing is not observed in practice.  The 

actual dependent variable for these regressions is the value of housing, which is the 

product of price and quantity.  As we have seen, the model makes no predictions for this 

variable.  The apparent failure of the model is illusory. 

 How can researchers claim that a regression of house values on distance from the 

CBD is a test of the monocentric city model?  Suppose that the unit price of housing 



 17

declines with distance from the CBD according to the function Ph(d) = eµ-δd.  Then the 

relationship between house values and distance is ( ) ( ) ddHdVh δµ −+= lnln .  If it were 

possible to control for all house characteristics (Z), then we would have 

( ) dZdVh δµθ −+=ln , which is a function that can be estimated easily.  A good, careful 

example of this approach is Coulson (1991), but bad examples are much more abundant. 

 The problem with this approach is that the full set of housing characteristics is 

never observed.  Suppose we have two houses that have three bedrooms and a garage, are 

on 1/3-acre lots, and appear to be identical in all measurable ways.  House A is 5 miles 

from CBD and costs $300,000 and House B is 10 miles from the CBD and costs 

$500,000.  There appears to be an upward-sloping house price gradient.  Unfortunately, 

missing variables include school quality, other local public services, and vague concepts 

like house quality.  If we could control for these variables, we might find a downward-

sloping house-price function.  But the family living in the higher-priced home 

undoubtedly has a higher income than the family in Home A.  Thus, what the regression 

really does is to trace out the places where higher-income families live.  As we have seen, 

the model predicts that the sign of this gradient can go either way. 
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7. Conclusion 

 By definition, a model is a simplification of reality.  The monocentric city model 

uses a very simple idea – that people will pay a premium for sites that lead to lower 

commuting costs – to generate a complete model of the spatial structure of an entire city.  

Although the assumptions are not literally accurate, they produce a mathematically 

tractable model with remarkable predictive power.  Even modern urban areas tend to be 

dominated by the traditional CBD.  Land values, population density, and floor-area ratios 

decline markedly with distance from the CBD.  Over time, rates of decline have fallen to 

the point that the CBD no longer dominates the entire urban area to the same extent as 

before.  But the theory actually predicts the decline in the importance of the CBD:  

declining commuting costs and increasing incomes lead to significantly lower gradients.   

 Much criticism of the monocentric city model comes from a misunderstanding of 

the empirical results.  Lower gradients produce lower R2s.  More disaggregated data sets 

also lead to lower R2s.  Suburban data have never been explained well by the 

monocentric city model, and the low gradients in these areas tend to further reduce R2s.  

The model makes no predictions regarding the spatial pattern of house values, and 

empirically it is nearly impossible to measure the theoretically relevant unit price of 

housing. 

 Within central cities, the most important deficiency of the monocentric city model 

is its failure to take into account the longevity of the capital stock.  Land values will be 

low in areas where floor-area ratios are high if existing buildings, which reflect past 

economic conditions, are costly to demolish.  The model’s failure is more serious in the 

suburbs.  Modern cities often have large suburban employment centers with marked 
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effects on the spatial structure of the suburbs.  Suburban areas have a fragmented system 

of government.  Local variations in zoning practices, tax rates, and the provision of local 

public goods have significant effects on the spatial patterns of variables such as house 

prices and population densities.  Although distance from the CBD has little predictive 

power in the suburbs, spatial relationships can often be modeled accurately with a few 

additional variables such as distance from employment subcenters and access to the 

transportation system.  With a few modifications, the monocentric city model remains a 

useful tool for understanding urban spatial relationships.  

 



 20

References 
 
Anas, A. (1978).  Dynamics of Urban Residential Growth.  Journal of Urban Economics 

5, 66-87. 

Anderson, J. E. (1982).  Cubic-Spline Urban-Density Functions.  Journal of Urban 

Economics 12, 155-167. 

Brueckner, J. K. (1986).  A Switching Regression Analysis of Urban Population 

Densities.  Journal of Urban Economics 19, 174-189. 

Brueckner, J. K. and Fansler, D. A. (1983).  The Economics of Urban Sprawl:  Theory 

and Evidence on the Spatial Sizes of Cities.  Review of Economics and Statistics 65, 479-

482. 

Clark, C. (1951).  Urban Population Densities.  Journal of the Royal Statistical 

Association Series A 114, 490-496. 

Coulson, N. E. (1991).  Really Useful Tests of the Monocentric City Model.  Land 

Economics 67, 299-307. 

Gallant, A. R. (1982).  On the Bias in Flexible Functional Forms and an Essentially 

Unbiased Form:  The Fourier Flexible Form.  Journal of Econometrics 15, 211-245. 

Hamilton, B. W. (1982).  Wasteful Commuting.  Journal of Political Economy 90, 1035-

1051. 

Hoyt, H. (1933).  One Hundred Years of Land Values in Chicago.   University of Chicago 

Press, Chicago. 

Macauley, M. K. (1985).  Estimation and Recent Behavior of Urban Population and 

Employment Density Gradients.  Journal of Urban  Economics 18, 251-260. 



 21

McDonald, J. F. (1979).  An Empirical Study of a Theory of the Urban Housing Market.  

Urban Studies 16, 297-297. 

McDonald, J. F. (1997).  Fundamentals of Urban Economics.  Prentice-Hall, Upper 

Saddle River NJ. 

McDonald, J. F. and H. Woods Bowman (1979).  Land Value Functions:  A Reevaluation.  

Journal of Urban Economics 6, 25-41. 

McMillen, D. P. (1996).  One Hundred Fifty Years of Land Values in Chicago:  A 

Nonparametric Approach.  Journal of Urban Economics 40, 100-124. 

McMillen, D. P. and T. W. Lester (2003).  Evolving Subcenters:  Employment and 

Population Densities in Chicago, 1970-2020.  Journal of Housing Economics 12, 60-81. 

Mills, E. S. (1969).  The Value of Urban Land.  In Perloff, H. (ed.) The Quality of the 

Urban Environment.  Resources for the Future, Washington, DC. 

Mills, E. S. (1972).   Studies in the Structure of the Urban Economy.  Resources for the 

Future, Baltimore. 

Muth, R. F. (1969).  Cities and Housing.  University of Chicago Press, Chicago. 

O’Sullivan, A. (2002).  Urban Economics.  Irwin/McGraw-Hill., New York. 

Wheaton, W. C. (1982).  Urban Residential Growth under Perfect Foresight.  Journal of 

Urban Economics 12, 1-21. 

 

 



 22

 Table 1 

Floor-Area Ratio Regressions 
 

 Chicago 
Homes 

Chicago 
Homes 

Cook County  
Census Tracts 

Cook County 
Census Tracts 

Constant -0.700 
(268.518) 

0.782 
(34.604) 

-0.626 
(35.829) 

0.268 
(4.465) 

x -0.055 
(205.472) 

 -0.055 
(39.540) 

 

x-x0  -0.903 
(41.215) 

 -0.490 
(14.099) 

(x-x0)2  0.151 
(23.229) 

 0.061 
(10.427) 

(x-x0)3  -0.009 
(15.332) 

 -0.003 
(9.534) 

(x-x1)3×(x≥x1)  0.005 
(6.814) 

 0.004 
(8.776) 

(x-x2)3×(x≥x2)  0.007 
(33.797) 

 -0.001 
(4.367) 

(x-x3)3×(x≥x3)  0.007 
(14.510) 

 0.001 
(0.773) 

R2 0.151 0.207 0.556 0.692 
Number of Observations 237,420 237,420 1,251 1,251 
 
 

Notes.  The dependent variable is the natural logarithm of the floor-area ratio.  Absolute 

t-values are in parentheses.  The evenly spaced knots for the Chicago spline function 

begin at x0 = 0.780 with an increment of 4.007 between knots.  Comparable values for the 

Cook County spline function are 0.782 and 8.312.  
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Figure 1 
 

Functional Form Prediction 
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Figure 2 
 

Population Density and Land Value Gradients in 
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Figure 3 
Floor-Area Ratios for Individual Homes in Chicago 
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